REPORT
 INTERNATIONAL BOUNDARY COMMISSION

establishment of the boundary between the UNITED STATES AND CANADA

ARCTIC OCEAN TO MOUNT ST. ELIAS

$$
979.8
$$

IBC

$$
1918
$$

REPORT OF THE INTERNATIONAL BOUNDARY COMMISSION

Mount St. Elias (18,008 feet) as seen from the northwest.

JOINT REPORT
 UPON THE
 SURVEY and DEMARCATION
 OF THE
 INTERNATIONAL BOUNDARY
 BETWEEN THE
 UNITED STATES
 AND
 CANADA
 ALONG THE 141st MERIDIAN FROM THE ARCTIC OCEAN TO MOUNT ST. ELIAS

In accordance with the provisions of
Article IV of the Convention signed at Washington

April 21, 1906

His Britannic Majesty's Commissioner
W. F. KING, 1906-1916
J. J. McARTHUR, 1917-

United States Commissioner
O. H. TITTMANN, 1906-1915
E. C. BARNARD, 1915-

Published under the authority of
The International Boundary Commissioners

LETTER OF TRANSMITTAL.

Ottawa, Canada, December 15, 1918.
The Honourable, The Minister of the Interior.
Sir: I have the honour to submit herewith, for transmittal to His Majesty's Government, the printed joint report upon the survey and demarcation of the International Boundary between the United States and Canada along the 141st Meridian from the Arctic Ocean to Mount St. Elias, together with duplicate atlases of signed joint maps, in accordance with the provisions of the Convention between Great Britain and the United States, signed at Washington, April 21, 1906.

The joint report contains:-
Copy of the Convention of 1906.
Copies of the appointments of the Commissioners.
Copy of the Orders in Council creating a neutral strip along the Boundary on the Canadian side.
Copy of the Proclamation of the President of the United States creating a similar neutral strip on the United States side.
Agreements of the Commissioners as to the manner in which the work should be executed.
Explorations and Surveys prior to the Convention of 1906.
General narrative of field operations under the Convention of 1906.
List of the monuments marking the Boundary Line, certified to by the Commissioners.
Description of the field methods, computations, adjustments, and instruments, containing:-
Table showing the geographic positions and elevations of triangulation stations.
Table showing the geographic positions of the monuments and line-projection stations.
Table showing certain elevations not included in the table of geographic positions. Table of magnetic declinations.
Appendices as follows:-
I. Early explorations and negotiations.
II. Later negotiations, and details of operations on the Boundary prior to the Convention of 1906.
III. Descriptions of triangulation stations, and sketches of the triangulation.
IV. Special equipment used on the work.
V. Ration lists.
VI. Game.

The duplicate atlases contain the thirty-eight original maps, certified and signed by the Commissioners, who have marked thereon the Boundary Line as established in accordance with the provisions of the Convention; also index and profile sheets, and two supplementary sheets, one showing the topography at the Arctic Coast as far west as Demarcation Bay, and the other, considerable additional topography in the region between Mount Natazhat and Mount St. Elias.

The field work, a great deal of which had to be done in portions of the country hitherto considered practically impassable, was completed under the direction of the original Commissioners, Mr. O. H. Tittmann for the United States, and Dr. W. F. King for His Britannic Majesty, and constitutes a lasting tribute to their efficient administration and supervision. Practically all the maps had also been prepared under their direction, as sheets 1 to 32, inclusive, had already been signed by them before the resignation of Mr. Tittmann on April 15, 1915, and the death of Dr. King on April 21, 1916.

The work was completed under the direction of Mr. E. C. Barnard, who was appointed Commissioner for the United States, April 30, 1915, and myself, by the printing and signing of the last six sheets, numbers 33 to 38 , and by the preparation, printing, and signing of the report.

The report and the signed original maps transmitted herewith are identical with those transmitted by my colleague to his Government, the reports having been printed from the same plates, and the signed original maps, as well as the copies thereof for both countries, having been printed from the same stones.

It is most gratifying to record that the location of the International Boundary along the 141st Meridian, and the preparation of the maps and report have been accomplished in a spirit of hearty co-operation, and to state that the cordial relations that so long existed between the former Commissioners have been continued by their successors.

I have the honour to be, sir, Your obedient servant,
J. J. McARTHUR,

His Britannic Majesty's Commissioner.

CONTENTS.

PAGE.
Convention between the United Kingdom and the United States of America respecting the Boundary between the Dominion of Canada and Alaska, signed at Washington, April 21, 1906 15
Appointments of Commissioners:
Mr. O. H. Tittmann for the United States 17
Dr. W. F. King for His Britannic Majesty 18
Mr. E. C. Barnard for the United States 18
Mr. J. J. McArthur for His Britannic Majesty 18
Orders in Council creating a neutral strip along the Boundary on the Canadian side. 20
Proclamation of the President of the United States creating a similar neutral strip on the United States side 22
Agreements of the Commissioners as to the manner in which the work should be performed. 23
Explorations and surveys prior to the Convention of 1906 25
General Narrative of Field Work under the Convention of 1906:
Season of 1907, Party Organization and Field Work 29
First Joint Report of the Commissioners. 35
Season of 1908, Party Organization and Field Work. 37
Second Joint Report of the Commissioners. 40
Season of 1909, Party Organization and Field Work 43
Third Joint Report of the Commissioners. 48
Season of 1910, Party Organization and Field Work 49
Fourth Joint Report of the Commissioners. 57
Season of 1911, Party Organization and Field Work. 58
Fifth Joint Report of the Commissioners 67
Season of 1912, Party Organization and Field Work 68
Sixth Joint Report of the Commissioners 78
Season of 1913, Party Organization and Field Work. 80
Ascent of Mount Natazhat 83
Ascent of Mount St. Elias 85
Seventh Joint Report of the Commissioners 98
L'envoi 98
Eighth Joint Report of the Commissioners. 99
Statistical Table showing details of the work done each year by the various divisions of the survey 100
Chart to accompany Statistical Table 101
Summary Table showing Chiefs of Party, and chiefs of sub-parties each year, and the approximate strength of parties 102
List of monuments marking the International Boundary along the 141st Meridian from the Arctic Ocean to Mount St. Elias 104
Certificate of Commissioners. 109
Descriptions of Field Methods, Instruments, Computations and Maps, with Tabular Results Telegraphic Longitude at the Yukon, 1906 110
Azimuth of the Line 115
Latitude at the Yukon 116
Line , Projection 118
Summary 122
Divergence Table 123
Triangulation: PAGE.Reconnaissance124
Bases. 126
Adjustment of triangulation 126
Table of Base Measurements in detail 130
Elevations along the Meridian 131
Tables of Geographic Positions:
Explanation of Tables. 132
Explanation of Yukon Datum. 132
Connection between Yukon and Southeastern Alaska Datums 132
Arrangement of Tables. 134
Conversion Tables, feet to meters 136
Conversion Tables, meters to feet 138
Geographic Positions of Triangulation Stations, and their elevations 140
Geographic Positions of Monuments and Line-projection points. 165
Table of Certain Elevations not included in the preceding tables 178
Precise Levelling 179
Mileage Table 181
River Crossings 182
Stadia Measurement 182
Comparison of Results 183
Vista Cutting 186
Monumenting 186
Topography 192
Maps. 193
Observations for Magnetic Declination 195 195
Table of Results 196
Inspection of Field Work 199
Conclusion 200
Appendices:
I. Early Explorations and Negotiations. 202
Treaty between Great Britain and Russia, signed February 16/28, 1825 202
Treaty concerning the cession of Alaska to the United States, March 30, 1867 208
Various exploratory expeditions 212
II. Later Negotiations leading up to the actual demarcation of the Boundary, with details of field work on the Boundary prior to the Convention of 1906 217
Necessity for the demarcation of the Boundary 217
Ogilvie 1887-8 218
McGrath and Turner 1889-91 225
Ogilvie 1895-6 236
Unratified Convention of 1897 238
McArthur 1902 240
Convention of 1906 240
Commissioners appointed 240
Neutral Strip along the Boundary 240
III. Descriptions of Triangulation Stations:
Between the Arctic Ocean and Porcupine River 242
Between Porcupine and Yukon Rivers 246
Between Yukon River and Mount Natazhat 252
Between the Boundary crossing of White River and Mount St. Elias 259
Sketches showing the Triangulation Scheme 265
IV. Special Equipment 273
V. Ration Lists. 278
VI. Big game seen along the Boundary 280
General Index 286
Special Index to Geographic Positions, Elevations, Descriptions and Sketches 298

ILLUSTRATIONS.

PAGE.
Mount St. Elias Frontispiece
Looking north across the Yukon at the Boundary, showing Ogilvie's old line and the new line 26
Looking upstream from the point from which the previous photograph was taken 27
Old Indian with his pack-dog at Whitehorse, Y.T 29
The Fiftymile River at Whitehorse, Y.T 30
First Avenue, Dawson, Y.T 31
Pack-train ready for the trail 33
Supplies stored on an animal-proof cache. 34
Heavy timber along Ladue River 35
" Marmot" triangulation station 37
In the Sixtymile country 38
Valley of Ladue River. 39
The Selkirk, of the W.P. \& Y. Route, " wooding-up " at Lower Laberge 39
Rafting down the Yukon in 1908 40
Mount DeCoeli from near the mouth of the Kaskawulsh River 42
Mount Natazhat as seen from the mouth of Kletsan Creek 43
Sledding under difficulties 44
Canyon City 44
Breaking trail on Bear Creek summit 45
A windy camp 45
Camp behind Mount Natazhat 46
Looking up the upper canyon of the White River 46
Reconnaissance party's launch 47
Reconnaissance camp, Black River, 1909 47
The Pauline, White River, 1910. 49
Launch with poling boats on Ladue River 50
Survey freight team crossing Takhini River on a brush bridge over the ice. 50
Takhini Roadhouse 51
" Calico Bluff " on the Yukon River. 51
A dusty piece of trail. 52
Ice in the Yukon River at Thistle 52
A " fly-camp" on Kandik River 53
Pack-train fording the Black River 53
The first horses to reach Rampart House. Turner's old survey building in the background. 54
Loading the horses into the scow 54
Starvation Summit, on the divide north of the Yukon River 55
The Susie, of the Northern Navigation Co , picking up the survey parties at Tatonduk River, September, 1910 56
Survey camp at Rampart House, 1911. 58
The Richness of the North. A shipment of 14,000 muskrat skins ready to be sent " outside " 59
Steamer Vidette, of the Side Streams Navigation Co., on the Porcupine River. 59
Shoeing a troublesome customer. 60
Branding 60
The first pack-train starting north from Rampart House. 61
Numerous watermarks on the banks of the Old Crow River 62
Shallow water on the Old Crow River 62
The Tanana, of the Northern Navigation Co., "wooding up" on the Porcupine River. 63
Circle, Alaska 63
Vaccinating a half-breed family 64
Camp on Rapid River, north of Rampart, House. 64
Survey pack-train crossing the " glacier" in Firth River valley, July, 1911 65
A typical Indian encampment 65
Ice going out of the Porcupine River at Rampart House, May, 1912 66
Survey horses after wintering on the bars of the upper White River
PAGE. 68
Fleet of survey launches on the Old Crow River, twenty miles below the Boundary.
Yukon poling boat 69
Hospital camp, twenty-five miles from the Arctic Ocean at an elevation of 2,500 feet. " Grizzly " triangulation station, (6,566 feet) in left background 70
Pack-train of survey dogs ready for the trip from Rampart House to Herschel Island. 71
At the Arctic Coast 71
Camp of monumenting party at the Arctic Coast 72
Triangulation station " Polar 72
Looking west along the coast from the Boundary. Demarcation Point in the distance 73
An abandoned " barabara " at Demarcation Point 74
Monument No. 1, and line-projection station " Cetera 74
Freighting up the Chitina River on the ice 75
A cache of horse feed 75
The sea of mountains south of Mount Natazhat. Looking east of south from triangulation station " Crag " 76
Bridging the Chitina River. 77
The divide between the heads of Skolai Creek and Chitistone River 77
"Cyclone", leader of the United States pack-trains for several seasons 78
Over the white ice of the Russell Glacier. Elevation about 5,000 feet 78
Joint inspection party's camp on the Sixtymile River. 80
A ticklish spot 81
At times the trail led between the glacier and the valley wall 81
The " Goat Trail" in Chitistone Valley 82
A bridge on the upper Klutlan River 83
Dog teams were used when the horses could go no farther 83
A desolate camp behind Mount Natazhat 84
Taking in supplies meant plenty of hard work 84
On the summit of Mount Natazhat 85
A Chitina River dog team 85
Crossing the Chitina River. This sled is placed on another temporary sled to keep the load above water 86
Care was necessary in moving round the instrument 86
A rough spot for horses 87
Camping in deep snow in March, 1913 87
" The entire day was spent crossing crevasses " 88
"An elevation of thirteen thousand five hundred feet " 89
Mount Logan (center) and Mount King (right) 90
Over this " land of desolation "passes the 141st Meridian 91
"We scaled a succession of cliffs" 92
Sledding in to Mount St. Elias 92
"A thermos bottle on an alpenstock marked the camera station " 93
Camp on an island of rocks 93
" The great towering mass of Mount St. Elias " 94
Nearing the summit of the divide between Logan and Columbus Glaciers 95
Observing at a line-projection station. Indian Grave Mountain in the background 118
Line-projection cairn 121
Signal and scaffold at West Base, White River 125
Yukon River, East Base 126
Precise Levelling 179
A temporary bench-mark 180
A permanent bench-mark 180
"A 20-foot clear sky-line 186
Type of large monument (Monument No. 182) 191
Type of small monument, and method of numbering 191
Inspection party's pack-train travelling up the bars of the upper White River 200
Looking down Miles Canyon 219
Whitehorse Rapids 220
PAGE.
Howling Dog Rock, Porcupine River 226
The Porcupine River below Rampart House (looking down stream) 226
In the Lower Ramparts of the Porcupine River 227
The Half-way Pillar, an old Hudson's Bay Company landmark, Porcupine River 228
Temporary boundary mark on the south bank of the Porcupine River, set by Turner in 1889-90. Photographed 1909 228
Turner's winter quarters, 1889-90. Photographed 1909. 229
The trader's new house at Rampart House, said to be the finest residence in America north of the Arctic Circle 229
The survey launches on the Old Crow River 273
The United States launch being taken down the Fiftymile River 274
The United States launch Midnight Sun 274
Special type of tent 275
Mosquito bar 275
Mosquito blankets of drill for the horses 276
A " smudge" near the Arctic Coast. 276
The Mountain Goat (Creamnis montanus) 280
The White Sheep (Ovis dalli) 281
The Alaskan Moose (Alces gigas) 282
The Woodland Caribou (Rangifer stonei) 283
Panoramas: at the end of the ReportFrom station " Porky."
From station " Divide."
From station " Low."
From station "Turn."From station " Point."From station " Crag."
SKETCHES, DIAGRAMS AND MAPS.
Sketch Map of the Mount St. Elias Region 86
Route Map, showing survey parties' trails. 98
Chart to accompany Statistical Table. 101
Line-projection diagram 120
Details of Large Monuments 188
Details of Small Monuments 189
Triangulation Sketch, No. 1: $69^{\circ} 45^{\prime}$ to $68^{\circ} 15^{\prime}$ 265
" No. 2: $68^{\circ} 15^{\prime}$ to $66^{\circ} 45^{\prime}$ 266
" No. 3: $66^{\circ} 45^{\prime}$ to $65^{\circ} 15^{\prime}$ 267
" No. 4: $65^{\circ} 15^{\prime}$ to $64^{\circ} 30^{\prime}$ 268
" No. 5: $64^{\circ} 30^{\prime}$ to $63^{\circ} 00^{\prime}$ 269
" No. 6: $63^{\circ} 00^{\prime}$ to $62^{\circ} 00^{\prime}$ 270
66 No. 7: $62^{\circ} 00^{\prime}$ to $61^{\circ} 15^{\prime}$ 271
66 No. 8: $61^{\circ} 15^{\prime}$ to $60^{\circ} 30^{\prime}$ 272

CONVENTION BETWEEN THE UNITED KINGDOM AND THE UNITED STATES OF AMERICA RESPECTING THE BOUNDARY BETWEEN THE DOMINION OF CANADA AND ALASKA.-SIGNED AT WASHINGTON, APRIL 21, 1906.

(Ratifications exchanged at Washington, August 16, 1906.)
Whereas by a Treaty between the United States of America and His Majesty the Emperor of all the Russias, for the cession of the Russian possessions, in North America to the United States, concluded March 30, 1867, the most northerly part of the boundary line between the said Russian possessions and those of His Britannic Majesty, as established by the prior convention between Russia and Great Britain, of February 28/16, 1825, is defined as following the 141st degree of longitude west from Greenwich, beginning at the point of intersection of the said 141st degree of west longitude with a certain line drawn parallel with the coast, and thence continuing from the said point of intersection, upon the said meridian of the 141st degree in its prolongation as far as the Frozen Ocean;

And whereas, the location of said meridian of the 141st degree of west longitude between the terminal points thereof defined in said Treaty, is dependent upon the scientific ascertainment of convenient points along the said meridian and the survey of the country intermediate between such points, involving no question of interpretation of the aforesaid Treaties but merely the determination of such points and their connecting lines by the ordinary processes of observation and survey conducted by competent astronomers, engineers and surveyors;

And whereas such determination has not hitherto been made by a joint survey as is requisite in order to give complete effect to said Treaties;

His Majesty the King of the United Kingdom of Great Britain and Ireland, and of the British Dominions beyond the Seas, Emperor of India, and the United States of America, being equally desirous to provide for the surveying and marking out upon the ground of the said astronomical line established by existing Treaties, and thus to remove any possible cause of difference between their respective Governments in regard to the location of the said 141st Meridian of west longitude, have resolved to conclude a Convention to that end, and for that purpose have appointed their respective Plenipotentiaries:

His Britannic Majesty, The Right Honourable Sir H. Mortimer Durand, G.C.M.G., K.C.S.I., K.C.I.E., His Majesty's Ambassador Extraordinary and Plenipotentiary to the United States; and

The President of the United States of America, The Honourable Elihu Root, Secretary of State of the United States;

Who, after having communicated to each other their respective full powers, which were found in due and proper form, have agreed to and concluded the following Articles:-

Article I. Each Government shall appoint one Commissioner with whom may be associated such surveyors, astronomers and other assistants as each Government may elect.

The Commissioners shall at as early a period as practicable ascertain by the telegraphic method a convenient point on the 141st Meridian of west longitude and shall then proceed under their joint direction and by their joint operations in the field, to trace and mark so much of a north-and-south line passing through said point as is necessary to be defined for determining the exact boundary line as established by the said Convention of 28/16 February, 1825, between the possessions in America of His Britannic Majesty, and the adjacent possessions in America formerly belonging to His Majesty the Emperor of all the Russias and ceded to the United States by the said Treaty of 30th March, 1867.

Article II. The location of the 141st Meridian as determined hereunder shall be marked by intervisible objects, natural or artificial, at such distances apart as the Commissioners shall agree upon and by such additional marks as they shall deem necessary, and the line when and where thus marked, in whole or in part, and agreed upon by the Commissioners, shall be deemed to define permanently for all international purposes the 141st Meridian mentioned in the Treaty of February 28/16, 1825, between Great Britain and Russia.

The location of the marks shall be described by such views, maps and other means as the Commissioners shall decide upon and duplicate records of these descriptions shall be attested by the Commissioners jointly and be by them deposited with their respective Governments, together with their final report hereinafter mentioned.

Article III. Each Government shall bear the expenses incident to the employment of its own appointees and of the operations conducted by them, but the cost of material used in permanently marking the meridian, and of its transportation and erection in place, shall be borne equally and jointly by the two Governments.

Article IV. The Commissioners shall diligently prosecute the work to its completion and they shall submit to their respective Governments from time to time, and at least once in every calendar year, a joint report of progress, and a final comprehensive report upon the completion of the whole work.

Article V. The present Convention shall be duly ratified by His Britannic Majesty, and by the President of the United States of America, by and with the advice and consent of the Senate thereof, and the ratifications shall be exchanged at London or at Washington as soon as possible.

In faith whereof, we the respective Plenipotentiaries have signed this Convention, and have hereunto affixed our seals.

Done in duplicate at Washington this twenty-first day of April, in the year of our Lord one thousand nine hundred and six.
[L.S.] H. M. DURAND.
[L.S.] ELIHU ROOT.

APPOINTMENTS OF COMMISSIONERS.

MR. O. H. TITTMANN FOR THE UNITED STATES.
Department of State, Washington, September 18, 1906.

Mr. O. H. Tittmann,
Superintendent, Coast and Geodetic Survey, Washington, D.C.

Sir,-You are hereby designated as Commissioner on the part of the United States to mark the boundary and make the surveys incidental thereto between the Territory of Alaska and the Dominion of Canada in conformity with the award of the Alaskan Boundary Tribunal and existing treaties.

The immediate duty assigned to you is to supervise the demarcation under the terms of the item "Boundary Line, Alaska and Canada," in the Act making appropriations for the diplomatic and consular service for the fiscal year ending June 30, 1907, approved June 16, 1906; and you are hereby authorized to arrange the details and to carry out the work and to sign the full report and maps as Commissioner for the United States jointly with the British Commissioner.

It has been arranged with respect to this work that each Government shall bear the expenses incident to the employment of its own appointees and of the operations conducted by them, but the cost of material used in permanently marking the boundary, and of its transportation and erection in place, shall be borne equally and jointly by the two Governments.

All vouchers for expenditures incurred under these instructions should be approved by you, or in your absence by the Acting Superintendent of the Coast and Geodetic Survey,

I am, sir, your obedient servant,
ALVEY A. ADEE, Acting Secretary.

Department of State.

To all to whom these Presents shall come, Greeting:
I certify that O. H. Tittmann, Superintendent of the Coast and Geodetic Survey, has been designated a Commissioner on the part of the United States to mark the boundary and make the surveys incidental thereto between the Territory of Alaska and the Dominion of Canada, in conformity with the award of the Alaskan Boundary Tribunal and existing treaties.

In testimony whereof, I, Alvey A. Adee, Acting Secretary of State of the United States, have hereunto subscribed my name and caused the Seal of the Department of State to be affixed.

Done at the City of Washington this eighteenth day of September, in the year of our Lord one thousand nine hundred and six, and the 131st year of the Independence of the United States of America.
[Seal of the Department of State.]
ALVEY A. ADEE.

DR. W. F. KING FOR HIS BRITANNIC MAJESTY.
 P.C. No. 1569.

Ref. $1,245,047$ on 1301 No. 8.
Extract from a Report of the Committee of the Privy Council, approved by the Governor General on the 23rd July, 1906.

The Minister of the Interior submits that Article I of the Convention which has been recently ratified between Great Britain and the United States, providing for the survey of the Alaskan-Canadian Boundary along the 141st Meridian of west longitude, makes provision for the appointment by each Government of one Commissioner for the carrying on of the work.

The Minister recommends that Mr. W. F. King, Chief Astronomer of the Department of the Interior, be nominated for the position of His Majesty's Commissioner.

The Committee advise that His Excellency be moved to advise the Right Honourable the Secretary of State for the Colonies accordingly.

All of which is respectfully submitted for approval.

To the Honourable
The Minister of the Interior.

> MR. E. C. BARNARD FOR THE UNITED STATES.
> DEpartment of State.

To all to whom these Presents shall come, Greeting:
I certify that Edward C. Barnard, of New York, has been designated a Commissioner on the part of the United States to mark the boundary and make the surveys incidental thereto between the Territory of Alaska and the Dominion of Canada, in conformity with the award of the Alaskan Boundary Tribunal and existing treaties.

In testimony whereof, I, William J. Bryan, Secretary of State of the United States of America, have hereunto subscribed my name and caused the Seal of the Department of State to be affixed.

Done at the City of Washington this thirtieth day of April, in the year of our Lord one thousand nine hundred and fifteen, and the 139th year of the Independence of the United States of America.
W. J. BRYAN.
[Seal.]
MR. J. J. McARTHUR FOR HIS BRITANNIC MAJESTY.
P.C. No. 2896.

Certified copy of a Report of the Committee of the Privy Council, approved by His Excellency the Governor General on the 29th November, 1916.

The Committee of the Privy Council have had before them a report, dated 18th November, 1916, from the Minister of the Interior, stating that Article VI of the Convention of the 24th January, 1903, between Great Britain and the United States, provides for the appointment by each Government of a Commissioner to deal with the laying down of the Alaska boundary line, from the southernmost point of Prince of Wales Island to the summit of Mount St. Elias, in accordance with the terms of the award of the London Tribunal of 20th October, 1903; also that the Convention of 21st April, 1906, in Article I, provides for the appointment of a Commissioner for the demarcation of the Alaska boundary, from the summit of Mount St. Elias, along the 141st Meridian, to the Arctic Ocean.

The Minister states that Mr. James Joseph McArthur having been appointed for the Commissionership under the Treaty of 11th April, 1908, for all sections of the international boundary from the Atlantic to the Pacific Ocean (excepting the section from St. Regis to the mouth of the Pigeon River), it is desirable that Mr. McArthur be also appointed as Commissioner to succeed our late Commissioner, Dr. W. F. King, under the above-mentioned Conventions of 1903 and 1906.

The Minister represents, in this connection, that all the field work on both these sections of the Alaska boundary has now been finished, but, under an agreement entered into by former Commissioners King and Tittmann, twenty-four ${ }^{1}$ degree sheets, showing the country from the southernmost point of Prince of Wales Island to the summit of Mount St. Elias, are now in course of preparation and will require to be signed by the British and American Commissioners. Under a similar agreement between the former Commissioners, the 141st Meridian boundary was subdivided into thirty-eight sections for mapping purposes. Thirty-two of these sheets have already been printed and signed by former Commissioners King and Tittmann, but the six remaining sheets which are now nearly ready for the printer will need to be signed, as will also the reports called for under the Convention.

In view of the circumstances above set forth, the Minister recommends that Mr. James Joseph McArthur, Dominion Land Surveyer and former Assistant International Boundary Commissioner, be nominated to succeed the late Dr. King as Commissioner for the whole of the Alaska boundary line dealt with under the Conventions of 1903 and 1906.

The Committee, on the recommendation of the Minister of the Interior, advise that Your Excellency may be moved to inform His Majesty's Secretary of State for the Colonies of the desire of Your Excellency's advisers in this regard.

All of which is respectfully submitted for approval.
RODOLPHE BOUDREAU,
To the Honourable
The Minister of the Interior.

No. (2140/45/A.)
SIR,-With reference to my despatch No. 389 of the 15 th ultimo I request that Your Excellency will notify the United States Government that Mr. J. J. McArthur has been appointed to succeed the late Dr. King as British Commissioner for the whole of the Alaska Boundary line dealt with under the Conventions of 1903 and 1906.

I am, with great truth and respect, etc.
VICTOR WELLESLEY.
His Excellency
The Right Honourable
Sir C. Spring-Rice,
G.C.M.G., G.C.V.O.,
etc., etc., etc.
${ }^{1}$ Reduced by the present Commissioners from twenty-four to thirteen, each sheet covering one degree of latitude and two degrees of longitude.

ORDERS IN COUNCIL CREATING A NEUTRAL STRIP ALONG THE BOUNDARY ON THE CANADIAN SIDE.

P.C. No. 810.

Ref. 1,569,421 on 1301 (7).
Certified copy of a Report of the Committee of the Privy Council, approved by His Excellency the Administrator on the 14th April, 1908.

On a report dated 1st April, 1908, from the Minister of the Interior with reference to a Despatch from His Majesty's Ambassador at Washington, dated 30th October, 1907, submitting for the consideration of the Dominion Government a proposal by the United States Government that joint action be taken for the reservation of a strip of land sixty feet wide on each side of the Canada-Alaska boundary line under similar conditions to that formerly established along the Mexican boundary line by Proclamation of the President of the United States.

The Minister of the Interior submits that in his opinion such a reservation will be of great service in the protection of the revenue and in the enforcement of the law generally, and he therefore recommends that with a view to the prevention of the erection of buildings or permanent structures or works on or close to the boundary line, except railways, aqueducts, bridges, canals, ditches and other works of a public character and except buildings or permanent structures or works properly connected with such railways, aqueducts, bridges, canals and other works of a public character, to be authorized to reserve the land within a strip sixty feet wide along the boundary line between Canada and Alaska from sale, lease and entry so far as the lands in question are vested in the Dominion.

The Minister points out that the title to wild lands adjacent to the Canada-Alaska boundary line is vested in the Dominion to the northward only of the sixtieth parallel of latitude. South of the parallel the lands lie in the province of British Columbia and the title to the crown lands is vested in the province.

The Minister has reason to believe, however, that the province of British Columbia will be willing to give its co-operation.

In connection with this subject the Minister of the Interior desires to suggest consideration of the possibility of making a similar reservation along other parts of the common boundary line, which, besides extensive stretches of water boundary, comprises some 1,900 miles on land.

Of the 1,300 miles or thereabouts from the Straits of Georgia to the Lake of the Woods, some 400 miles lie west of the summit of the Rocky Mountains. Along this distance the Minister understands that the Government of British Columbia has already reserved a strip 66 feet wide, wherever the land has not already been disposed of, along the International Boundary Line. East of the Rocky Mountains, under the original surveys made by the Dominion Government, road allowances were left adjoining the boundary. These road allowances are no longer under the control of the Dominion Government, having now passed under the jurisdiction of the provinces of Alberta, Saskatchewan and Manitoba.

The four provinces mentioned would doubtless agree to make the road allowances and the reservation permanent, though to secure that end, concurrent agreement by the United States or by the several states affected, to reserve a similar strip would appear to be desirable.

The Minister states that along the line from the St. Lawrence River to the St. Croix the natural difficulty of enforcing the laws of the two countries along an extensive boundary line is enhanced by the fact that the property adjacent to the line, on both sides, has passed into private hands, and at many points there exist so-called " line houses" which stand close to or upon the line, and which in many instances, as has been charged, have been used for smuggling or for evasion of law, to a serious extent. While it may not be practicable, by reason of the expense which it would involve to apply the effective remedy of removing these houses altogether, it is a matter for consideration whether there are any steps which the two Governments could take to prevent the erection in future of further houses of this kind.

The Committee, concurring in the foregoing, advise that His Excellency be moved to forward a copy hereof to His Majesty's Ambassador at Washington, with a request that he inform the Government of the United States that the Dominion Government is in full accord with the principle of their proposal, and will take steps to give effect to the reservation along the frontier of the Yukon Territory, and that he further call attention to the suggestions herein contained relative to other parts of the International Boundary Line.

All which is respectfully submitted for approval.

RODOLPHE BOUDREAU, Clerk of the Privy Council.

To the Honourable

The Minister of the Interior.

$$
\text { P. C. No. } 2235 \text { M. }
$$

$$
\text { Ref. } 1,633,875 \text { on } 1,301 \text { (8). }
$$

Certified copy of a Report of the Committee of the Privy Council, approved by His Excellency the Governor General on the 7th August, 1908.

The Committee of the Privy Council have had under consideration a despatch, dated 22nd June, 1908, from His Majesty's Ambassador to the United States, transmitting copy of a proclamation by the President of the United States setting apart as a public reservation all unpatented lands of the United States lying within sixty feet of the boundary line between the United States and Canada. His Majesty's Ambassador draws attention to the fact that the original proposal for reservation of the Alaska frontier has now been extended so as to include the whole frontier, this being in accordance with the wishes of the Dominion Government.

The Minister of the Interior, to whom the said despatch was referred, states that under the authorization of the Order in Council of 14th April, 1908, he has withdrawn from sale, lease and entry, all public lands lying within sixty feet of the international boundary in Yukon Territory.

The Minister recommends that the matter be brought to the attention of the Government of the province of British Columbia, which with a view to the better enforcement of the laws of that province as well as of the Dominion may find it advisable to make a similar reservation along the boundary between British Columbia and Alaska and along the 49th parallel.

In view of the fact that the lands in the road allowance which was laid off in the original surtveys of Dominion Lands along the international boundary in the provinces of Manitoba, Saskatchewan, and Alberta, have been transferred to these provinces, the Minister further recommends that the matter be brought to the attention of the respective Provincial Governments with the suggestion that this road allowance be retained for public use only.

The Committee, concurring in the foregoing, submit the same for approval and advise that Your Excellency may be pleased to transmit the substance of this Minute, if approved, to His Majesty's Ambassador at Washington for the information of the United States Government.

> RODOLPHE BOUDREAU,
> Clerk of the Privy Council.

To the Honourable
The Minister of the Interior.
Published in The Canada Gazette of 3rd April, 1909, vol. 42, for the fourth consecutive week.

PROCLAMATION BY THE PRESIDENT OF THE UNITED STATES OF AMERICA (RESERVATION OF LANDS ON CANADIAN BOUNDARY).

Whereas, the customs and immigration laws of the United States can be better enforced and the public welfare thereby better advanced when the Federal Government has complete control of the use and occupation of lands abutting on international boundary lines;

Now, therefore, I, Theodore Roosevelt, President of the United States, do hereby proclaim and make known that all unpatented public lands of the United States, lying within sixty feet of the boundary line between the United States and the Dominion of Canada, are hereby declared to be, and are set apart as a public reservation, and shall hereafter be subject only to such rights as have been heretofore legally acquired under settlements, entries, reservations, or other forms of appropriation, and are now existing, but shall not be subject at any time to any other claim, use, or occupation, except for public highways; and any patent issued for any legal subdivision affected by this reservation under any claim hereafter initiated, shall contain a recital that it is issued subject to this proclamation.

In witness whereof, I have hereunto set my hand and caused the Seal of the United States to be affixed.

Done at the City of Washington this 15 th day of June, in the year of our Lord one thousand nine hundred and eight, and of the Independence of the United States the one hundred and thirty-second.

By the President:
Elihu Root,
Secretary of State.
THEODORE ROOSEVELT.
(No. 810.)

AGREEMENTS OF THE COMMISSIONERS AS TO THE MANNER IN WHICH THE WORK SHOULD BE EXECUTED.

The first conference of the Commissioners was held at Washington, D.C., November 23, 1906, and following days, the Commissioners exhibiting their credentials, which were found in proper form.

At this and subsequent conferences, the principal points agreed upon by the Commissioners with regard to the fulfilment of their duties under the terms of the Convention were:-

That the final and agreed longitude of the observing pier on the south bank of the Yukon River, as determined by officers of the Coast and Geodetic Survey and officers of the Dominion Observatory, was 9 hours, 24 minutes, 00.027 seconds west of Greenwich, or 17.62 feet west of the true meridian of 141 degrees west from Greenwich, and that the initial point of the boundary line should be located in accordance therewith.

That an accurate azimuth should be observed by a joint party at the initial point, and that a mark should be set determining the direction of the boundary line, which should be produced in this direction north to the Arctic Ocean and south to Mount St. Elias.

That the work should be executed jointly by representatives of the two Governments.

That the boundary line should be produced by the micrometric transit method, representatives of the two Governments observing independently.

That the boundary line should be permanently marked by large and small aluminiumbronze monuments set in rock or concrete foundations at intervals of not more than four miles, and intervisible where practicable, except in the region between Mount Natazhat and Mount St. Elias.

That a vista with a 20 -foot sky line should be opened along the boundary through all timber encountered.

That a belt of triangulation should be extended along the boundary line, and the geodetic positions of all monuments determined.

That the computation of the trigonometric determination of the positions of peaks and monuments should be made under the direction of the computing division of the Coast and Geodetic Survey at Washington, and that the results, when obtained, should be submitted to the Commissioners for their final approval and adoption.
That a topographic map, for final drawing on a scale of $1 / 62,500$ with a contour interval of one hundred feet, should be made of the belt of country extending not less than two miles and not more than two and one-half miles on each side of the boundary line, excepting in the region between Mount Natazhat and Mount St. Elias, where it might be made wider if found desirable.

That a line of precise levels should be run from tide water at Skagway, Alaska, to some point on the boundary line for the control of elevations.

That the Alaska Coast Boundary should be drawn from Mount St. Elias to the 141st Meridian on such course parallel to the coast as should be found most equitable in the topographic conditions.

That the maps should be engraved on copper and printed in colors from stone, and that after the completion of the printing the copper plates should be deposited for safe keeping in the vaults of the United States Geological Survey, Department of the Interior, Washington, D.C.

EXPLORATIONS AND SURVEYS PRIOR TO THE CONVENTION OF 1906.

Although the United States had acquired the territory of Alaska by purchase from Russia in 1867, no effort was made to locate the Boundary Line along the 141st Meridian until 1887, when a Canadian party in charge of the late Wm. Ogilvie, Dominion Land Surveyor, descended the Yukon River, erected an observatory and spent the winter of 1887-8 on the north bank of the river near the meridian, and having determined the longitude of the observatory by astronomic observations, measured the requisite distance therefrom and marked a point where the 141st Meridian of longitude west from Greenwich crossed the Yukon River.

In 1889, United States parties in charge of J. E. McGrath, Assistant, and J. H. Turner, Sub-Assistant, Coast and Geodetic Survey, ascended the Yukon River to Fort Yukon, where the parties separated. Mr. Turner's party ascended the Porcupine River to the vicinity of the 141 st Meridian, where a winter camp was built, and during the winter of 1889-90 observations were taken for longitude, latitude, and azimuth, determining the position of the Boundary Line, which was marked with three temporary monuments. Mr. McGrath's party continued up the Yukon to the point occupied by Mr. Ogilvie in 1887, and remained there until the spring of 1891, the observations for longitude, latitude, and azimuth being continued throughout the second winter on account of unsatisfactory observations due to bad weather during the winter of 1889-90. The results of these observations confirmed the position of the Boundary Line as determined by Mr. Ogilvie.

In 1895, Mr. Ogilvie again occupied the observatory built by him in 1887, and made additional observations which checked the work previously done by Mr. McGrath and himself, and by a more accurate measurement determined a point on the 141st Meridian, where an azimuth was observed, the direction of the Boundary Line determined and the line produced to the north five miles, and to the south as far as Sixtymile River, cutting, blazing, and marking the line by small cairns. In 1902, the line was extended southward from Sixtymile River to the flats at the head of Scottie Creek by a Canadian party under J. J. McArthur, Dominion Land Surveyor, but no permanent marks were set.

Early in 1906, Mr. O. H. Tittmann, Superintendent of the United States Coast and Geodetic Survey, and Dr. W. F. King, Chief Astronomer of the Dominion of Canada, who were at that time Commissioners for the Alaska Coast Boundary, and who expected to be and were later appointed Commissioners for the survey of the 141st Meridian under the Convention of 1906, learned that by the proposed Article I of the Convention then under consideration, it was provided that the survey of the International Boundary Line along the 141st Meridian should be based upon a telegraphic determination of the longitude at some convenient point, and when they became aware that the terms of the Convention had been agreed upon, they were met by the consideration that the refined astronomic observations requisite for this determination could not properly be made except during the summer, while a reduction of the observations would require considerable time. In order that full advantage

[^0]
of the summer season of 1907 should be taken in the survey of the line, and with a view especially of meeting urgent demands which had been made for an early demarcation of that portion which extends southward from the Yukon River, it appeared desirable that the astronomic observations which were a necessary preliminary to the survey operations should be completed during 1906. They therefore decided to utilize, in advance of the formal ratification and proclamation of the Convention, the organizations under their direction, namely, the Astronomic Branch of the Department of the Interior of Canada, and the United States Coast and Geodetic Survey, in performing the astronomical work.

The only point of the 141st Meridian which was in telegraphic communication with outside points was the crossing of the Yukon River, and this point was therefore necessarily chosen for the astronomical determination. The telegraphic connection was made by the lines of the Canadian Government and the Canadian Pacific Railway Company with Vancouver, B.C., and also by the United States Government line with Fort Egbert (Eagle), Alaska, on the Yukon, about twelve miles below the Boundary.

The longitude at Vancouver and Fort Egbert, as reckoned from Greenwich, had already been determined by operations carried on under the two Governments, the astronomic stations at Seattle, Wash., and Vancouver, B.C., having been connected during the season of 1905 by the telegraphic determination of their difference of longitude, the observers being Assistant Edwin Smith of the Coast and Geodetic Survey, and Dr. Otto J. Klotz, of the Dominion Observatory at Ottawa; and later the longitude was carried by Assistant Smith and Assistant J. E. McGrath by cable to Sitka and Valdez, and thence overland to Fort Egbert.

Looking up-stream (northeast) from the point from which the photograph opposite was taken.
Hence a determination of the longitude near the meridian by two telegraphic routes was possible, and as such double determination would result in increased accuracy, it was resolved upon, and late in July, 1906, observers were sent to each of the three stations, Vancouver, Fort Egbert, and the Meridian: Mr. Smith of the Coast and Geodetic Survey to Egbert; Mr. McDiarmid of the Dominion Observatory, to a station near the Boundary on the Yukon; and Dr. Klotz of the Dominion Observatory, to Vancouver.

Considerable difficulty was experienced in obtaining good wire connection between the Boundary and Vancouver. The line, in its length of nearly two thousand miles, traverses a sparsely settled country; in fact, by far the greater part is a wilderness. Through the woods a fair "right of way" is cleared, and the wire is supported on trees from which the branches have been cut. Under these conditions, with the vicissitudes of wind and water and fire, it was only to be expected that interruptions in the telegraphic service would be not infrequent, but as it subsequently turned out, the service was better than anticipated, the good results being largely due to the solicitous interest of the superintendent of the line, Mr. J. Phelan, and of the chief operator at Vancouver.

Mr. McDiarmid was installed at the Boundary ready to observe by August 20, and work began on the 22nd. The weather at all three stations was continuously very propitious, and the telegraph line, as mentioned already, worked better than had been expected, so that by September 3 seven differential longitude determinations had been secured between Boundary and Vancouver, for five of which each observer had obtained a full set of stars for the two independent time determinations, while for the other two nights good time determinations were also obtained, though not
with the full complement of stars. Similarly, between Boundary and Egbert, seven differential longitudes were obtained.

It is interesting to note that though Ogilvie's line of 1895-6, as marked on the ground, was about 370 feet too far west, the longitude observations showed that his line of 1887-8 was only some 218 feet west of the meridian, as established by the most modern methods under almost ideal telegraphic conditions, and the McGrath observations gave a position only 477 feet east of the final line. ${ }^{1}$ This may be considered a great tribute to the original observers, their work ${ }^{2}$ having been done by what might almost be called field methods, and under weather conditions which were the reverse of propitious.

The Convention of 1906^{3} was signed at Washington on April 21 of that year, and ratifications were exchanged, also at Washington, on August 16 following. Under Article I of the Convention, the Commissioners for the Alaska Coast Boundary, Mr. Tittmann ${ }^{4}$ and Dr. King ${ }^{4}$, were appointed Commissioners also for the survey and demarcation of that portion of the 141st Meridian forming the boundary between Alaska and Canada.

[^1]
GENERAL NARRATIVE OF FIELD WORK UNDER THE CONVENTION OF 1906.

Field Work.
The observations taken during 1906 by the officers of the United States Coast and Geodetic Survey and of the Dominion Astronomical Observatory, having been computed during the winter gave an accurate determination of the longitude of the astronomical pier on the south bank of the Yukon River, and showed it to be 17.62 feet west of the 141st Meridian west from Greenwich.

In order to take full advantage of the short working season in this portion of Alaska, the Commissioners decided to send representatives to the boundary in the early spring to make observations for azimuth and to mark points on the Boundary Line determining its direction, so that all would be in readiness for the immediate prosecution of the work when navigation should open, permitting the other members of the party to reach the starting point with their larger outfit of pack-horses, equipment, and supplies.

Mr. F. A. McDiarmid, Canadian Representative, and Mr. G. C. Baldwin, United States Representa-

Old Indian with his pack-dog at Whitehorse, Y.T.
tive, and those who were to accompany them, met in Seattle during the latter part of March, and, with their instrumental equipment, proceeded via steamer to Skagway, Alaska, thence by the White Pass and Yukon Railway to Whitehorse, Y.T., and by stage line 330 miles to Dawson. Arriving there on April 13, they purchased supplies, and on the 14th started with hired teams over the frozen Yukon for the Boundary Line. In places the ice was very rough, while in other places the snowdrifts were deep, and in still others the ice was

The Fiftymile River at Whitehorse.
covered with water and slush to the depth of a foot, so that progress was slow and laborious. Twice the sled capsized on the rough ice, several times a path had to be shovelled through the huge drifts, while in the early morning it was often necessary for the men to walk in front of the horses and break down the heavy snow crust. In the flooded sections of the river some of the party walked ahead through the icy water to test the ice and select the best route. When the party reached the town of Fortymile, they were compelled by the Royal Northwest Mounted Police to discharge the Dawson team, as this was the entrance to a district where there existed a quarantine to prevent the spread of glanders, and a few days' delay occurred before another team could be secured to take them the remainder of the distance to the Boundary Line, which they reached on April 20.

The snow was still deep on the hills, and was very soft, making it difficult, as the party was not provided with snowshoes, to climb to the summit on which an azimuth mark was to be placed. A point was first located and marked on the Boundary Line directly east of the 1906 longitude pier a distance of 17.62 feet as agreed to by the Commissioners, and in order to determine a second point on the line at a considerable distance, the pier was occupied and observations for azimuth were taken by both United States and Canadian observers to determine a true north-and-south line, and at a second point about one and one-quarter miles south of the pier, an offset was made and the second point established on the Boundary. These two points determined the direction of the line.

The other members of the joint parties arrived at the Boundary early on the morning of June 12, the United States parties having left Seattle on May 25, the Canadians boarding the same boat at Vancouver the following day. Skagway was reached on May 30, where the parties remained a few days, as Lake Laberge was still ice-bound. Entraining at Skagway on June 5, they arrived at Whitehorse that evening, and took up their quarters on the White Pass and Yukon Route steamer Canadian, on which boat they sailed for Dawson and the Boundary on the evening of the 8th, reaching the latter point, as already stated, on the 12 th.

First Avenue, Dawson.
What a contrast was this trip to that made by the Ogilvie party in 1887! These early surveyors, with their instruments, supplies, and two canoes, occupied about seven weeks on that part of the trip from salt water to the present site of Whitehorse, while the " hardships" of the later parties consisted in having their horses and outfits loaded on the White Pass and Yukon Route train at Skagway, stepping into a comfortable first-class coach themselves, and enjoying the wonderful scenery through the mountains and over to Whitehorse, the trip occupying about eight hours.

The arrangements for the season were as follows:-
Each Government was to furnish its own supply and transportation trains, but in this, as in all other matters, the work was greatly facilitated by the hearty co-operation of all concerned, and it was no unusual occurrence to find a United States pack-train supplying subsistence to a Canadian party, or vice versa. It was soon found that although the primary object of the survey was to run and mark a boundary, there was "no boundary line" as far as the work itself was concerned, and all worked together so well, and everything progressed so smoothly at all times, that it seemed as if the work were being done by one large party.

Owing to the fact that few Canadian surveyors were available for the work, this year the greater part of the field-work was done by the United States parties, the Canadians, as a partial offset to this, supplying the subsistence for the entire force.

The line-projection was carried on jointly by a United States and a Canadian observer, and a Canadian representative was attached to the United States triangulation party. With the exception of these men and the field hands with them, the force was entirely from the United States.

The first permanent marks on the boundary were the two bronze monuments of the large pyramidal type which were set, one on either bank of the Yukon, while the parties were encamped there in June, these monuments being eventually given the numbers 111 and 112 when the final numbers were allotted. These were the only monuments set this year, though the vista was cut and stadia measurements made as far as the Sixtymile River, a distance of over fifty miles. Throughout this section, monument sites were selected and the positions tied in to the triangulation preparatory to the setting of the monuments the following year. The vista was cut with a sky-line " 20 feet clear," and though this involved the felling of a great number of trees, it made an opening through the timber which will be very conspicuous for a great many years.

While the parties were in camp at the Yukon, there occurred one of those strange, sad incidents which come to those whose profession takes them to the far corners of the earth. On June 24 one of the camp cooks noticed the body of a man floating downstream. A boat was sent out and the body towed ashore and landed at the mouth of Boundary Creek, a little below the camp. The cook happened to be a Dawsonite and identified the body as that of a man named Frank McKay, who had been drowned a short distance below Dawson by the upsetting of his canoe some three weeks previously. Using the telegraph loop in the Boundary observatory, a message was sent to Dawson, and Captain Tucker of the Royal Northwest Mounted Police came down next day in the mail launch to hold an inquest. But as the body had been landed below the boundary line in United States territory, the police were unable to handle the case. The United States authorities at Eagle, through the Commissioner there, authorized the burial of the body, but could provide no funds, so it fell to the lot of the Boundary Surveyors to construct a rough box of packing-cases in which, after being wrapped in canvas, the remains were laid at rest behind the old roadhouse near the mouth of Boundary Creek, the United States Chief of Party reading the burial service.

The triangulation, ${ }^{1}$ which was expanded from a base measured on the south bank of the Yukon River, extended southward, along the line, to a point a few miles south of the Sixtymile, in the valley of which river a check base was measured.

The joint line-projection party traced the line for a distance of 125 miles south from the Yukon, using heliotropes for back- and fore-sights and for communication, points being determined and marked on prominent ridges at intervals of from ten to twenty miles. The topographic party mapped a strip of country along the boundary, four miles wide, and extending from the Yukon to Walker's Fork of the Fortymile River, a distance of about forty-five miles. This topography was done by the United States parties with the plane table, while for the purposes of comparison, the Canadians made a photo-topographical survey of the same strip.

The Yukon was assumed to have an elevation at the boundary of 835 feet above sea-level, and this datum was used until precise levels were carried in from Skagway, as will appear later. This assumed elevation, which proved to be remarkably nearly correct, ${ }^{2}$ was based partly on a comparison of barometer readings taken in camp by Ogilvie in 1887-8 with contemporary readings taken at Sitka, Alaska, and at Port Simpson and Victoria, B.C., and partly on general knowledge of the length and average fall of the river per mile.

[^2]

Supplies stored on an animal-proof cache.
Forty-eight pack-horses, purchased in eastern Washington, furnished transportation for the parties during the season. The animals, after coming safely through a strenuous season, were to have wintered at Tanana Crossing, Alaska, but all perished in a furious blizzard which overtook them on their way there. The question of wintering the stock used on the survey was a source of much worry and disappointment to those in charge of the work. The horses had to be purchased "outside" and " taken in." The first cost, though comparatively reasonable, was augmented by the heavy freight rates and the cost of feeding while on the long journey to the point where they could be used. As the cost of taking them "outside" again in the fall, wintering them, and returning them again in the spring was prohibitive, they had to be wintered in the country, and, as the survey progressed, the outcome of this plan was found to be more or less uncertain. Some winters all the animals would "come through" looking fit and well in the spring, while again every head perished, and this despite the fact that every likely spot in the whole north district was given a fair trial.

As conditions met with in 1907 were more or less typical of those throughout the whole work, with the exception of the extreme north and south ends, a short description of them, perhaps, will not be out of place here. The country was undulating to mountainous, generally with deeply eroded stream beds. Heavy timber was usually encountered in the valleys, with the summits bare, or at best covered with a sparse growth of stunted timber or underbrush. Generally, travelling was found to be good along the ridges, except, of course, in the more mountainous portions, where the valleys
were found to furnish the best routes of travel, and almost no trail-cutting was necessary except where it was impossible to travel on the ridges, and not always then. The thick moss overlying almost the whole lower country made very tiresome "going" for man and beast, and tended to make the firm, hard ridge-tops the popular lines of communication.

Wood for fuel was everywhere plentiful, as was also good water for camp purposes. The long days of these high latitudes aided the work materially, though at times, particularly on the more northerly portion of the work, many of the men complained that at first they were unable to get their usual quota of sleep owing to the light at night. The majority, however, soon became accustomed to this, and "bed-time" was "bed-time" no matter how light the night.

Mosquitoes and other insects were plentiful, but by using "mosquito bars" during the day, and sleeping in mosquito-proof tents at night, the human members of the parties managed to get along fairly comfortably. Not so, however, with the horses, which were often so bothered that they could not remain quiet long enough to feed or rest, though they were protected as much as possible by mosquito blankets,

Heavy timber along Ladue River. " fly-dope,". and numerous smudges, the latter proving the most practical of all the various schemes experimented with.

The annual joint report of the Commissioners, provided for in Article IV of the Convention of 1906, and covering this season's operations, reads as follows:-

First Joint Report of the Commissioners for the Demarcation of the 141st Degree of West Longitude.

The undersigned Commissioners, appointed in virtue of the first Article of the Convention between the United States and Great Britain, signed at Washington on the 21st April, 1906, have the honor to present their first report upon the progress of the demarcation of the one hundred and forty-first meridian of west longitude where it forms the boundary line between the United States and Canada.

By Article I of the Convention it was provided that the survey of the line should be based upon a telegraphic determination of the longitude at some convenient point. When the undersigned became aware that the terms of the Convention had been agreed upon, they were met by the consideration that the refined astronomical observations requisite for this determination could not properly be made except during the summer, while the reduction of the observations would require a considerable time. In order that full advantage of the summer season of 1907 should be taken in the survey of the line, with a view especially to meeting urgent demands which had been made for an early 23565-3 $\frac{1}{2}$
demarcation of that portion which extends southward from the Yukon River to the St. Elias Alps, it appeared desirable that the astronomical observations which were a necessary preliminary to the operations should be completed during 1906.

The undersigned, having these circumstances in mind, decided to utilize in advance of the formal ratification and proclamation of the Convention, the organizations which are under their direction, namely, the Astronomical Branch of the Department of the Interior of Canada and the United States Coast and Geodetic Survey, in performing the astronomical work. Accordingly, observers were sent out about the end of July, who completed the necessary observations in August and September. The computations were made during the winter.

The only point of the 141st Meridian which is in telegraphic communication with outside points is the crossing of the Yukon River. This point, therefore, was necessarily chosen for the astronomical determination. The telegraphic connection is by the lines of the Canadian Government and the Canadian Pacific Railway Company with Vancouver, B.C.; and also by the United States Government line, with Fort Egbert, Alaska.

The longitude at Vancouver and Fort Egbert, as reckoned from Greenwich, had already been determined by operations carried on under the two Governments, and by the most approved methods. Hence a determination of the meridian by two telegraphic routes was possible, and as such double determination would result in increased accuracy, it was resolved upon, and observers were sent to each of the three stations Vancouver, Fort Egbert, and the Meridian.

When the observations had been reduced, the records and computations were examined by both Commissioners who, at a conference held in Ottawa in March last, agreed upon instructions to the line surveyors that the final and agreed longitude of the observing pier at the Yukon River was 9 h . $24 m .00 s .027$ west of Greenwich, or seventeen feet, approximately, to the west of the true meridian of one hundred and forty-one degrees west of Greenwich.

In pursuance of instructions prepared by the Commissioners at the conference above mentioned, a joint party was sent out in March for the purpose of establishing the initial point and determining the direction of the meridian. At the opening of navigation on the Yukon River in May, a joint survey party followed.

Two aluminum-bronze monuments have been placed to mark the meridian at the crossing of the Yukon, one on each bank, and at this date the tracing out of the line southward, and the triangulation and topographical work of the survey, are in active progress.

O. H. TITTMANN,
 U. S. Commissioner.
 W. F. KING,
 H. B. M. Commissioner.

SEASON OF 1908.
PARTY ORGANIZATION.

	For the United States.	For His Britannic Majesty.
Chiefs of Parties	G. C. Baldwin Thos. Riggs, jr	A. J. Brabazon, D.L.S.
Assistants.	W. B. Reaburn W. B. Gilmore. A. I. Oliver	Fred. Lambart, D.L.S. D. H. Nelles, D.L.S. Claude Brabazon. Thos. P. Reilly.

Field Work.
Work was continued southward in 1908 under the same general arrangements as in the previous year. The British Commissioner, however, had a more generous appropriation at his disposal and was able to put more men in the field, necessitating some slight changes in the details, and making possible a more even division of the work and responsibilities in the field.

The topographic party was sent into the Yukon over the winter trail, late in April, and was at work by the middle of May, thus gaining nearly a month's time over the other parties engaged on the work. This experiment was so successful that the practice was followed each successive year to increase the length of the working season, a very important consideration in view of the great expense of taking the parties into and out of the country, and of the relatively large proportion of the total number of days of the field season which were necessarily consumed in getting to the work in the spring and out again in the fall.

" Marmot" triangulation station. The topographic party, though, had to work under great difficulties until the arrival of the main party, as they had no means of transportation except "manpower," all their supplies being taken in on sleds, or by back-packing, a distance of about twenty-five miles from a depot on the Sixtymile River. In addition to this the snow was so deep that most of the work had to be done on snowshoes. The topographic belt was extended southward about sixty-five miles this season.

In the Sixtymile country.
Several depots of supplies for the work had been established for this season's operations. The main bases were at Miller Creek, the United States supplies having been taken in during the winter, and the Canadian supplies over the wagon road from Dawson in June. From here they were distributed during the season to the various camps by special supply pack-trains, assisted at times by the different camptrains when they could be spared for this work. Other depots for the use of the joint line-projection party were established at Katrina Creek and Canyon City, with a smaller depot on Snag Creek for the triangulation party, all these supplies being taken in by small-boat via the White River as soon as possible after the opening of navigation.

Early in June one of the river steamers landed the line-projection party at the mouth of the White River, which they ascended in small boats. The members of the main party were met by their pack-trains at Katrina Creek and went overland to the boundary at "O," the last point set in 1907, near the crossing of Snag Creek. The fore-helio party continued up the river to Canyon City, and attempted to reach a point on line which had been selected the previous fall, and which was about seventy miles south of "O." They were unsuccessful in this, however, and though they made many attempts from various ridges, they were unable to get into communication with the main line-projection party, who as a result were forced to send forward their rear-helio party as a fore-party, and use target back-sights. Although this necessitated shorter, and hence more numerous, sights, they were able to get the line south to, and across, the White River before the close of the season. Owing to illness, the Canadian observer was unable to occupy the last two stations, but the independent work of the United States observer was in due course accepted as satisfactory by

Valley of Ladue River.
the Commissioners. This party returned to Dawson in small boats, floating down the White and Yukon Rivers.

The reconnaissance and triangulation parties succeeded in carrying their work southward about seventy-five miles from the ridge south of the Sixtymile River. These two parties were de-

The Selkirk, of the W. P. \& Y. Route, " wooding-up " at Lower pending for their late season subsistence on the small cache of supplies which had been boated up Snag Creek, but which they were unable to locate, as it had been left farther downstream than agreed, and it was only after being for forty-eight hours entirely without food that these parties met, and both were forced to return and join the topographic party at Ladue River, the only serious result being a regrettable shortening of the all too brief field season.

Rafting down the Yukon in 1908.
A Canadian party set twenty-four monuments, thus completing this part of the work as far south as the Sixtymile River, from which point they returned to Dawson over the Glacier trail. As each of these small monuments weighs about fifty-five pounds, and is set in concrete with two hundred pounds of cement, the question of transportation in this and the succeeding years was one of considerable importance.

The Canadian vista-cutting and stadia party opened the vista and measured the line as far as Ladue River, a distance of about fifty-five miles, selecting, marking and locating the monument sites as they progressed. Photo-topography for comparison purposes was also continued as far as the Ladue.

The various parties that finished their season's work here, built rafts on which they floated down to Dawson, where the whole force embarked on up-river steamers, on the first stage of the journey to Vancouver and Seattle.

The United States horses which survived the season's work were wintered at Champagne Landing, while the Canadian stock was sent up to the fine feed bars of the upper White River.

The annual joint report of the Commissioners, provided for in Article IV of the Convention of 1906, and covering the season's operations, reads as follows:-

Second Joint Report of the Commissioners for the Demarcation of the Meridian of the 141st Degree of West Longitude.

The undersigned Commissioners, appointed in virtue of the First Article of the Convention between Great Britain and the United States, signed at Washington on the 21st April, 1906, have the honor to present their second report upon the progress of the demarcation of the 141st Meridian where it forms the boundary line between Canada and the United States.

The joint party, referred to in our former report, that was sent out in March, 1907, to establish the initial point and to determine the direction of the meridian, completed that work, and had the meridian marked for a distance of 2 miles south of the Yukon River by the time the main survey party arrived in June.

The operations of the season were conducted as follows:-
One joint party carried on the accurate prolongation of the meridian, southward, and established governing points on the boundary.

Another party carried on a triangulation for the purpose of accurate measurement along the line, made a plane table survey on a scale of $1 / 45,000$, extending two miles on each side of the line, and cut out a vista through the woods where these occur. The plane-table topography was supplemented by a photo-topographical survey on either side of the boundary.

The mileage of the season of 1907 was: Establishment of points on the meridian, 130 miles, from just north of the Yukon River to the hill in the bend of Scottie River; triangulation, 61 miles, to the hill south of Sixty-mile River; cutting out the line and marking the sites for monuments, 52 miles; and the topographic surveys, 46 miles. No permanent monuments were set during this season, except the two at the Yukon River.

During the season of 1908, the distribution of the force was somewhat different from that of the previous season; one joint party produced the meridian as before, but the auxiliary work of triangulation, topography, and line-cutting was divided among three parties. A party to plant the permanent monuments was added and a levelling party to determine the elevation of a point on the meridian referred to sea-level at Skagway, via Whitehorse.
The mileage of the season of 1908 was: Prolongation of the meridian and establishment of governing points, 75 miles from the terminal point of 1907, to a point about two miles south of White River; triangulation, 77 miles, to the hill in the bend of Scottie River; topography, 65 miles, to the hill south of the main branch of Ladue River; the line cutting, 45 miles, to the main branch of Ladue River; and levelling, 159 miles. Permanent monuments were set at the points determined upon during the previous year, from Yukon River to Sixty-mile River. These monuments are of aluminum-bronze; one of them, on the north bank of Forty-mile River, is a large one, similar to those set at the crossing of Yukon River (six feet high, one foot square at base); the others are of smaller pattern, like those used on the boundary of the coast strip of Alaska (30 inches high).

> W. F. KING,
> \quad H. B. M. Commissioner.
O. H. TITTMANN,

Ottawa, 29th December, 1908.

Mount DeCoeli from near the mouth of the Kaskawulsh River.

SEASON OF 1909.
PARTY ORGANIZATION.

	For the United States.	For His Britannic Majesty.
Chiefs of Parties.	G. C. Baldwin. Thos. Riggs, jr	A. J. Brabazon, D.L.S. Fred. Lambart, D.L.S. J. D. Craig, D.L.S.
Assistants.	W. B. Reaburn A. C. Baldwin D. W. Eaton A. I. Oliver. W. C. Guerin. L. Netland.	D. H. Nelles, D.L.S. A. G. Stewart. Thos. P. Reilly.

Mount Natazhat (13,440 feet) as seen from the mouth of Kletsan Creek.

Field Work.

By the fall of 1908 the projection of the line had crossed White River and thus was far in advance of the other divisions of the survey, and the Commissioners therefore decided that during 1909 a special effort should be made to carry the whole work as far as the Natazhat Range, about fifteen miles south of river. This necessitated a large increase in the size of the parties and in the number of horses necessary for transportation. It was also decided to increase the length of the working season

Sledding under difficulties.
by going in overland in early spring by the winter trail from Whitehorse to the head of White River, in order to be on the ground and ready for work as soon as weather and snow conditions would permit.

To facilitate the season's operations and to eliminate delays as far as possible, supplies were forwarded by contract from Whitehorse during the winter to a main base at Canyon City; and another smaller base was established, also by freighting during the winter, at the Yellowwater Lakes, about one hundred miles north of Canyon City, and oats were distributed along the trail for the use of the stock on the long journey in.

The parties which had been increased in size over previous seasons, made a quite formidable showing on the journey to Canyon City. There were fifty-one men, of whom seventeen were Canadians, and eighty-three horses, the Canadians furnishing thirty-three of these. In addition, there were the transport teams and three drivers who handled the supplies for immediate use on the way in, as well as the dunnage and camp outfit, the men making the trip on foot. Wagons were used for the transportation of supplies as far as Lake Kluane, which was crossed with sleighs on the ice, and from this point everything was packed on the horses.

The journey was made in slightly under three weeks, the first nine or ten days being over the so-called wagon-road, where the wagons often "bogged down" almost hopelessly in the mud-holes, to be extricated only by using eight or ten horses, with all hands laying to on the wheels or working with pries. On the higher portions of the trail, too, great difficulty was experienced getting the wagons through the deep snow. The Canadians made the trip a few days ahead of the United States parties and enjoyed the doubtful pleasure of "breaking trail" throughout a considerable portion of the distance.

Canyon City.

Owing to the deep snow, the trail over the Burwash Summit west of Lake Kluane was not used. The route selected followed the Koidern valley to the Donjek River, which was crossed on the ice, thence up the Donjek to Wolverine Creek, up this creek and across the divide to the Klutlan, thence down the Klutlan to the White River and up to Canyon City. The last of the parties crossed the White on May 21 on the only remaining ice-bridge, a short half-hour before it collapsed into the swollen waters of the river.
From Canyon City the various parties proceeded to the scenes of their respective

Breaking trail on Bear Creek summit. season's operations, and by the last week in May the field work may be said to have been well under way.

A base line, crossing the boundary line, was laid out and measured on the south bank of the White. For topographic control, a preliminary measurement of this base was made by triangulation from a short temporary base, thus enabling the topographic work to be begun without delay. The triangulation was first extended southward to the northern slopes of the Natazhat Range, and later northward to connect with the triangulation of 1908, after which a scheme was laid out and observed from the boundary up the valley of the White to Skolai Pass, where connection was made with several United States Geo-
 logical Survey stations. It was necessary to assume a level datum for the topographic work, as had been done at the Yukon in 1907, and this was found later to be only 103 feet in error.

The topography was mapped by two planetable parties, one working southward from the Moosehorn Mountains, where the work of the previous year had terminated, and the other working at the southerly end, first between the White River and the Natazhat

Range, and later north from the river, meeting the northerly party on August 24 near Mirror Creek.
The line location was also advanced a stage farther south and a point was located on a northerly spur of the Natazhat Range just north of the main ridge.

Strenuous attempts to occupy as topographic camera stations, both Natazhat itself and some of the high adjacent peaks were unsuccessful, on account of the weather conditions, which were unsuitable for such work in the higher altitudes. In connection with

Camp behind Mount Natazhat.

Looking up the upper canyon of the White River.
this work the range was crossed at the head of Holmes Creek, about twelve miles west of the boundary, and an attempt was made to climb Natazhat from the south, and though the summit was not reached on this occasion, considerable useful information was secured concerning the country south of the range.

In the report of the trip behind Natazhat we read: "The trail led over the divide on glare ice, where steps had to be cut for nearly half a mile, then down a long ridge of loose scoria and out onto a badly broken fork of the Klutlan Glacier. It began to snow, but we had to go on, as it would have been impossible to re-cross the divide in the storm, and reached camp at 8.30, worn out and chilled to the bone, and found the tent down and everything wet or frozen. We shovelled away the snow for a small space with snowshoes, put up the tent as best we could and crawled into our scanty bedding. During the night it snowed 25 inches, and continued snowing the greater part of the next day. Even with the coaloil lamp burning full blast and three men in the little seven by seven tent, the thermometer registered only $32^{\circ} . "$ And this was on the eleventh of August!

The vista was opened along the boundary from timber-line near Mount Natazhat north for a distance of about fifty miles, and some twenty-odd monuments were set and located by the triangulation.

The United States parties went out overland to Whitehorse, except one small party which, like the Canadians, went downstream in small-boats to Dawson, and thence up the Yukon by steamer, all hands passing

Reconnaissance party's launch, 1909. through Whitehorse about September 25.

During this season, a start was also made in locating the line north from the Yukon. A small United States party which came in after the opening of river navigation, accompanied by a Canadian attaché, projected about forty miles of line. They also cut the vista and set monuments along this forty miles, as well as completing the necessary reconnaissance and triangulation, but no topography was undertaken.

Leaving the United States party after the forty miles of projection had been completed the Canadian attaché chartered a launch at Dawson and made a reconnaissance trip up the Black River, with the special object of ascertaining if it would be feasible to take supplies in via this river when the work had progressed as far as the district drained by it. The net results of the trip showed that this was not practicable unless it proved to be almost impossible to transport supplies along the line as had been done south of the Yukon, the Black being shallow in many spots, and navigable for power-boats only during a short period immediately following the "break-up" in the spring.

The Porcupine was also ascended as far as Rampart House in a little over four days, much to the amazement of the natives, and it was found that this river was navigable, or would be in June, for steamers of considerable size. The launch was then taken back to Dawson and

Reconnaissance camp, Black River, 1909. turned over to the owners, having made nearly two thousand miles, most of this north of the Arctic Circle, and on rivers where the purr of a power-boat had never before been heard.

The annual joint report of the Commissioners, provided for in Article IV of the Convention of 1906, and covering this season's operations, reads as follows:-

Third Joint Report of the Commissioners for the Demarcation of the Meridian of the 141st Degree of West Longitude.

The undersigned Commissioners, appointed in virtue of the First Article of the Convention between the United States and Great Britain, signed at Washington on the 21st April, 1906, have the honor to present their third report upon the progress of the demarcation of the 141st meridian where it forms the boundary line between the United States and Canada.

The operations of the season of 1909 were conducted as follows:-
One joint party carried on the accurate prolongation of the line, northward from the Yukon River to a ridge between two main tributaries of Nation or Takandik Creek, a distance of 40 miles, and then returned to Eagle, Alaska, where a division of the party was made, part going up the Porcupine and Black Rivers for the purpose of determining the feasibility of using these routes for the transportation of supplies for the work of future seasons; the other part carrying on a scheme of triangulation for the computation of accurate measurements along the boundary, extending the triangulation 43 miles, northward, from the Yukon River to stations in the same locality as the terminus of the line.

One sub-party continued the cutting of the boundary vista, twenty feet wide, along the projected meridian, for 40 miles, and planted 12 of the small aluminum-bronze monuments. The precise levelling for the determination of a point on the meridian, referred to sea-level at Skagway, Alaska, was continued. It was completed between White Pass Summit and Whitehorse, and from the terminus of last season's operations for a distance of 164.5 miles along the Dawson wagon road to a point at Eureka Creek, about 52 miles from Dawson, October 8, distant 398 miles from White Pass Summit.

For the work South of the Yukon River, the parties marched on foot 300 miles overland early in the season from Whitehorse, to a point on the meridian determined in $1908,11 / 2$ miles south of the White River. From this point the line was jointly projected, southward, for ten miles to a minor ridge of Mount Natazhat.

The stretch of boundary from the present terminus near Mt. Natazhat to Mt. St. Elias, a distance of 89 miles, of very inaccessible country, will not be taken up at the present time.

One party, consisting of three sub-parties, cut the vista both ways from the White River for a total distance of 60 miles, set two large monuments, one on each bank of the White River, 4 of the smaller monuments between the White River and Natazhat Ridge, and 15 between White River and Snag River.

Another party, sub-divided into 5 parties, completed a belt of topography on the scale of $1 / 45,000$ from the main ridge of Mt. Natazhat to the hill south of the main fork of Ladue River-the most southerly point reached by the topographers in 1908.

Triangulation was carried from points near Mt. Natazhat, northward, 83 miles to the range of hills in the bend of Scottie River, connecting with stations established the previous season. In addition to this, a scheme of triangulation was run up the White River to Skolai Pass- 22 milesfor the purpose of determining the positions of the mountains in the neighborhood of the boundary.

A recapitulation of the work done by the various parties in 1909 shows the following results:-
Line projection.
50 miles.
Length of triangulation net. 149 "
Length of topographic belt. 112 "
Vista cut. .. 100 ،
Number of permanent monuments planted. 100
33
Precise levels run \qquad
n....
d dema.............. 33 241 '
The whole survey and demarcation between the point mentioned near Natazhat Ridge and the Yukon River, a distance of 215 miles, has now been completed, with the exception of the vista cutting for a distance of 57 miles, and the placing of the final monuments for about 101 miles.

O. H. TITTMANN, U. S. Commissioner,
W. F. KING,
H. B. M. Commissioner.

Washington, December, 1909.

SEASON OF 1910.

PARTY ORGANIZATION.

	For the United States.	For His Britannic Majesty.
Chiefs of Parties.	Thos. Riggs, jr.	J. D. Craig, D.L.S.
Assistants.	A. C. Baldwin W. B. Reaburn A. I. Oliver W. B. Gilmore W. C. Guerin F. S. Ryus. O. M. Leland	Fred. Lambart, D.L.S. A. G. Stewart, D.L.S. D. H. Nelles, D.L.S. Thos. P. Reilly.

Field Work.

At the close of the season of 1909 , the survey of the boundary was practically complete from the Yukon to Mount Natazhat, with the exception of about fifty miles of vista to be cut between Ladue and Mirror Creeks, and the setting of the monuments on line between this latter point and the Sixtymile River. This work was done in 1910

The Pauline, White River, 1910.
by a Canadian party, with a United States attaché, with a main base of supplies on Ladue Creek. The party left Whitehorse after the opening of navigation, on the Pauline, one of the smaller river steamers, and was able to get up the White as far as the mouth of Ladue River, where the men and outfit were transferred to two poling boats, which were towed up the creek by a gasolene launch as far as the boundary line. This part of the trip, a

Launch with poling boats on Ladue River. distance of about forty miles, was made in two days, a violent and timely rainstorm having raised the water so that the river was easily navigable. This party finished its field work early in September, and returned to Dawson, part via Snag Creek in small boats, and part over the Glacier trail, the horses as usual being driven overland to winter on the bars of the upper White River.

The main efforts of the season were confined to the prosecution of the work north of the Yukon, with the object of advancing it sufficiently to enable it to be attacked from the north in 1911 with Rampart House as a base of operations.

Accordingly, not only were the parties increased in size, but nearly three weeks were added to the length of the field-season by taking the men and horses in from Whitehorse over the Dawson stage trail as far as Carmacks, where they embarked for Dawson and the boundary on the steamer Canadian, which had wintered at Hootalinqua. Advantage was thus taken of the fact that the Lewes River opens for navigation in the spring some little time before the ice goes out of Lake Laberge, and it was thus possible to land the men at their first camp on May 24, while Lake Laberge was not passable until about June 10. The United States and Canadian Chiefs of Party, with two members of the Yukon Council, and the Superintendent of Mail Service of the White Pass and Yukon Route had the distinction of reaching Dawson on May 19 with mail, in the first small-boat of the season of 1910, after a rather hazardous trip down from Selkirk with the last of the ice, in a risky but successful attempt to keep ahead of the fleet of small-boats which always descend the river at this season each year, and among the navigators of which there is always considerable friendly rivalry as to who shall be the first to land at Dawson. This enabled all necessary arrangements to

Survey freight team crossing Takhini River on a brush bridge over the ice.

Takhini Roadhouse.
be made for the summer's work before the arrival of the parties on the steamer on the 23 rd .

The mouth of Tatonduk River had been selected as base camp for the season, for although it is twenty-five miles downstream from the boundary, the river swings in to within eight miles of the line at that point. Stopping at the line-crossing merely long enough to land the topographers who were to work between the Yukon and the Tatonduk, the steamer landed the main parties at the mouth of this latter river on the evening of the 24th.

" Calico Bluff " on the Yukon River.
$23565-4 \frac{1}{2}$

Fortunately the weather was fine, and in those northern latitudes at that time of year there is plenty of day light throughout the twentyfour hours, for here were fifty men, with fifty or sixty tons of camp outfit and supplies and seventy-five horses, landed on the river bank at a time of day when, in a more southerly clime, it would have been absolutely impossible to bring order out of the existing confusion before nightfall and darkness. However, in a remarkably short space of

A dusty piece of trail.
time, cook and mess tents were set up, and supplies piled neatly and covered with tarpaulins, but no sleeping tents were pitched until the following day, everyone spending that night in the open.

A day's reconnaissance discovered a trail to the beginning of the season's work, shorter than that leading up the Tatonduk, the new trail leading down the north bank of the Yukon for some five or six miles and then turning sharply inland up a draw and over a divide down to a branch of Nation River, and thence by various ridges and draws to a point on the boundary about forty miles north of the Yukon.

The same general division of the work as heretofore was adhered to this season, except that the line-projection was done by a Canadian party with a United States attaché.

The parties started inland after a couple of days spent shoeing horses and allotting them to the various parties, and in sorting and distributing the supplies.

This was the beginning of a friendly race between the projection fore-helio party and the triangulation reconnaissance party, first one and then the other forging ahead, until in August the latter outdistanced the former. However, after connecting with

Ice in the Yukon River at Thistle.
the triangulation of a small party which had gone in via the Porcupine, the reconnaissance party turned south, observing as they went, while their rivals were able to continue on, and by the close of the season had set a point on line about ten miles north of the Porcupine, thus putting this part of the work in good shape for an advantageous beginning the following season.

The Porcupine triangulation party reached Rampart

A "fly camp" on Kandik River. House by steamer about June 22, having left Whitehorse shortly after Lake Laberge was open for navigation. Their boat, which, in addition to supplies for their immediate needs, carried about fifty tons of staples and feed for use in 1911, was the first steamer to ascend the Porcupine this far, and so marked the beginning of a new era in the navigation of this river, for up to this time the Rampart House trader had laboriously brought all his supplies upstream in scows, "tracked" by Indians, while before him, the Hudson's Bay Company had taken their supplies in via Fort McPherson and over the divide to the Bell River and so down the Porcupine.

Pack-train fording the Black River.

The first horses to reach Rampart House. Turner's old survey building in the background.
This northern triangulation party selected and prepared for measurement a base on the plateau south of the river, and selected the stations for and observed on two quadrilaterals which, combined with the work of the other parties to the south, completed the triangulation from the Yukon to the Porcupine. This was accomplished by this small party of three, who, in addition, were forced to use up three weeks of their precious short season packing on their backs, from the beach to a storehouse loaned by the local trader, all the supplies and feed landed by the steamer, because the local Indians, who thought they had a corner on the market, demanded prohibitive rates for packing, and to have acceded to their demands would have created a

Loading the horses into the scow. precedent from which the survey would have suffered increasingly each season afterwards.

The topographic parties carried the topography from the Yukon across the main Black River, a distance of over one hundred miles, while the vista was opened from its terminus of 1909 to Orange Creek, a distance of sixty-one miles. This party also set thirteen monuments, the last being a few miles north of Kandik River.

Starvation Summit, on the divide north of the Yukon River.
The projection party, having finished their season's work at a point near Rampart House, were fortunately able to procure, from the local trader, a scow into which they loaded their six horses and made the trip down the Porcupine, a distance of two hundred and twenty-five miles, in a little over four days, high water in the river enabling them to make this good time. They were followed by the triangulation party in a canoe, and after a few days' wait at Fort Yukon, boarded the Northern Navigation Company's steamer Susie, bound up the Yukon. At Tatonduk River, five days later, they picked up the members of the other survey parties, who had been in camp there only a few days, the trip south from the vicinity of the Black River having occupied nearly three weeks. A species of hoof-rot had appeared among the horses early in the season, and despite every effort to prevent it spreading, had wrought great havoc during the summer, and had carried off nearly one-third of the stock, and had weakened many of the others. ${ }^{1}$ This epidemic, combined with the effects of the wintry storms encountered on the divide north of the Yukon, and the killing of the feed by fall frosts, made the trip back to the river anything but pleasant, and many more horses died on the way. This sickness among the horses hampered operations greatly, and it was in a great measure due to the sacrifices made by the men in the interests of the work that such good progress was made during the season.

In 1910, the first check was obtained on the original assumed elevation of the Yukon at the boundary by the completion of a line of precise levels connecting station " G "

[^3]

The Susie, of the Northern Navigation Co., picking up the survey parties at Tatonduk River, September 1910.
of the boundary, afterwards Monument No. 126, with tidewater at Skagway, Alaska. This work had been commenced in 1908, when a Canadian party started a line of precise levels at Whitehorse, three seasons being necessary to carry the levels down the winter trail to Dawson and thence out the Glacier trail to Monument No. 126. From Whitehorse, another line connected at White Pass, British Columbia, with the work brought up from Skagway, Alaska, by the United States parties in 1910. The assumed datum at the Yukon was found to be in error only 38.4 feet, the correction being plus.

The annual joint report of the Commissioners, provided for in Article IV of the Convention of 1906 and covering this season's operations, reads as follows:-

Fourth Joint Report of the Commissioners for the Demarcation of the Meridian of the 141st Degree of West Longitude.

The undersigned Commissioners, appointed in virtue of the First Article of the Convention between the United States and Great Britain, signed at Washington on the 21st of April, 1906, have the honor to present their fourth annual report upon the progress of the demarcation of the 141st Meridian where it forms the boundary line between the United States and Canada.

By reference to our third annual report, it will be seen that between Natazhat Ridge and the Yukon River, there remained 57 miles of vista cutting and 101 miles of monumenting to be done in order to complete the work between Mount Natazhat and the crossing of the boundary on the Yukon River.

During the past season this work was done, thus completing the boundary between Natazhat Ridge and the Yukon River. A second joint party traced the line from a point about 40 miles north of the Yukon River, the terminus of last year's work, to 10 miles north of the crossing on the Porcupine River, and the same stretch of country was covered by a belt of triangulation. The topography was taken up at the Yukon River and a belt was mapped for a distance of 144 miles northward from the initial point on the Yukon to latitude $67^{\circ} 43^{\prime} \mathrm{N}$. The line cutting was begun at a point about 40 miles north of the Yukon and carried northward about 63 miles, and the monumenting was completed for a distance of 45 miles, reaching latitude $65^{\circ} 55^{\prime} \mathrm{N}$. The line of precise levels connecting the tidal station at Skagway, by way of White Pass and Dawson, with a point a point on the 141 st Meridian has been completed.

A recapitulation of the work done by the various parties in 1910, shows the following results:-
Line projection, 157 miles.
Length of triangulation net, 152 miles.
Length of topographic belt, 144 miles.
Distance monumented, 146 miles.
Number of monuments planted, 49.
Precise levels run, 130 miles.
Vista opened and stadia line, 118 miles.

December 28, 1910.

W. F. KING,
His Britannic Majesty's Commissioner.
O. H. TITTMANN,
United States Commissioner.

[^4]
SEASON OF 1911.

PARTY ORGANIZATION.

	For the United States.	For His Britannic Majesty.
Chiefs of Parties.	Thos. Riggs, jr	J. D. Craig, D.L.S.
Assistants.	W. B. Gilmore	D. H. Nelles, D.L.S.
	W. B. Reaburn.	A. G. Stewart, D.L.S.
	A. C. Baldwin D. W. Eaton	Fred. Lambart, D.L.S. Thos. P Reilly
	W. C. Guerin	Thos. P. Reily.
	F. S. Ryus.	

Field Work.

With Rampart House as the base of operations, 1911 promised and proved to be one of the busiest seasons spent on the meridian, and great preparations were made in the spring to ensure success, for the length of time occupied in going in to and coming out from the northern portion of the work, when deducted from the all too short northern season between the spring "break-up" and the fall "freeze-up," made it necessary that everything should go with a swing in the field, or valuable time would be lost.

It was decided to send the

Survey camp at Rampart House, 1911. men and horses, as in 1910, overland from Whitehorse to Carmacks, there to embark for Dawson. Supplies were purchased in Seattle and Vancouver, sufficient, it was hoped, for the seasons of 1911 and 1912, and a contract was entered into with the Northern Navigation Company to land these at Rampart House as early as possible in the season, taking them in via St. Michael and thence upstream by barge and steamer. It was calculated that by drawing on the supplies taken in to Rampart House in 1910, and
by taking in a relatively small quantity over the ice of Lake Laberge and by steamer from the foot of the lake, the parties would be able to subsist until the main shipment should arrive.

To facilitate the handling of supplies from the base at Rampart House each Government had a launch built at Whitehorse, with which it was hoped to be able to distribute supplies to various sub-bases, particularly at the point where

The Richness of the North. A shipment of 14,000 muskrat skins ready to be sent "outside." the line crosses the Old Crow River, about sixty-five miles north of Rampart House, and possibly up the Black River to or near the line for the monumenting and vista-cutting parties working south of the Porcupine. Each launch was about fifty feet over all, and was equipped with a 25 -horsepower gasolene engine driving a stern-wheel, and with a power capstan for " tracking" or "lining" upstream. Each launch was capable of handling a barge carrying from eight to ten tons, and in addition to these two other launches were chartered for the season.

In spite of all these elaborate preparations, the season of 1911 was destined to be one of much trial and tribulation. Lake Laberge broke all precedents, and the ice failed just when it was most needed, leaving considerable freight stranded at the upper end. Another lot was caught halfway down the lake, and had to be cached there until the lake was clear, while the freight which did reach the foot had to be landed in such haste that it was in the utmost confusion. An examination disclosed the fact that considerable survey freight was in each of these lots, and that while both launches had been

Str. Vidette, of the Side Streams Navigation Co., on the Porcupine River. taken successfully to the foot of the lake, one of the barges had been pulled up on the beach near the head.

At Whitehorse, the Chiefs of Party, mindful of their experience "following the ice" the year before, and desirous of seeing if things were in as bad a tangle at the foot of the lake as reported, decided to go over the lake on the ice and thence to Dawson by launch. Once again they found that they had chosen the more exciting and hazardous, if shorter, route; also that the ice was

Shoeing a troublesome customer.
quite as bad as had been reported, and conditions at the foot of the lake worse even than they had imagined. In addition to the confusion incident on the enforced hasty handling of the freight, seven steamers and four launches were outfitting for the season, a couple of large scows were being repaired, and two or three hundred people were impatiently awaiting the time when they could be on their way down the river.

As much as possible of the survey outfit was sorted out of the six or seven hundred tons of miscellaneous freight here and loaded on the steamer Lafrance to be taken to Dawson. The boat grounded in the Thirtymile River, and afterwards burned, but the survey freight was saved and followed later on a barge, and in due course reached Rampart House.

As the supplies, which had been intended to last until the main shipment should arrive via St. Michael, had been delayed at the lake, sufficient purchases were made in Dawson to replace them. Other small lots were purchased at Eagle, Circle, Tanana, and Fort Yukon.

The parties arrived in Dawson on the Canadian on May 26, and the next day the St. Michael sailed with the first consignment of the parties, considerable stock, and a quantity of supplies. A Canadian party was landed at the mouth of Kandik River, up which they proceeded in poling boats to the line, where they met their horses, these having been brought along the line from the mouth of Tatonduk River, where they had disembarked. This party continued the monumenting and vista-cutting north from where it had been dropped in 1910, and during the season opened the vista along the line and selected monument sites as far north as Salmontrout River. Very few monuments were set, however, owing to the failure of the launch to get far enough up the Black to deliver the cement and monuments to the party. The parties remaining on the St. Michael were transferred to the Reliance at Fort Yukon, and were landed at Rampart House on the evening of June 1.

The other parties, United States and Canadian, with the remaining stock and about fifty tons of freight and feed, left Dawson on the steamer Vidette on the morning of May 31, and arrived at Rampart House on June 6, the trip up the Porcupine being rather slow owing to the heavy load and the high stage of the river.

In 1910 the advance parties of the survey had arrived at Rampart House unannounced, at least as far

Branding.

The first pack-train starting north from Rampart House.
as the native population was concerned. During the winter of 1910-11, however, the news seemed to have been spread that the survey was coming in full force, and there was congregated at Rampart House a motley assemblage of natives and their dogs, and the parties received a cordial if unconventional welcome.

The usual two or three days of more or less orderly confusion ensued in getting the one hundred and fifty horses shod, outfits sorted and allotted, and supplies distributed to the various parties, numbering about eighty men in all, and what a wonderful time this was for the Indians! The horses commanded their greatest respect, and they would, at least at first, retire to their tents or cabins in great haste should a stray horse wander into the "village." They were puzzled to know the wherefore of the horse-shoes. "The moose and the caribou didn't need them." Having no word in their language for horse, they simply called them the "big dogs," and several of them were very desirous of becoming the owners of horses, for the fact that they could carry a load of two hundred and fifty pounds appealed to them, but their enthusiasm waned when they found they would not eat fish, which of course is the staple food of the country for man and beast. The " broncho busting " by the packers, and the breaking of the horses to the pack-saddles caused intense admiration and amazement, and the first Indian to trust himself on a horse's back was a local hero for some days.

During the next week the various parties all got away for their work north and south of the river. The launches were also busy. The United States launches had been working on the Old Crow, and had succeeded in landing about twenty tons of

Numerous watermarks on the banks of the Old Crow River.
supplies at a point a few miles below the line-crossing. The Canadian launch, owing to the fast-falling water was able to get only two hundred miles up the Black, or about two-thirds of the distance to the line. She brought her freight to Rampart House, and as much of it as possible was sent south from there by pack-train. The smaller Canadian launch brought in mail early in June, and then was used by the Chiefs of Party in an attempt to get up the Old Crow to the line. But the spring high water had subsided, and there were no practical results from the trip, except a first-hand knowledge of the Old Crow Flats, with special emphasis on the fact that there the flies and mosquitoes were extraordinarily plentiful.

Meanwhile, although the work was progressing satisfactorily, no word had been received as to the movements of the freight coming in via St. Michael, and some anxiety was felt by the Chiefs of Party as to whether it would arrive in time, more especially as the river was falling rapidly. They therefore went to Fort Yukon on the small launch, where it was found that the steamer was expected daily, and the Tanana arrived on June 13, and after washing boilers, left for Rampart House with about eighty tons of freight aboard and towing a barge loaded with about two hundred and twenty-five tons. It was soon apparent that the low water was going to cause trouble, and the barge had to be dropped the second day out. By the greatest exertions, and only stopping to rest when the crew was completely exhausted, the steamer with her load was pulled, pushed, and warped upstream over the numerous shallow riffles to a point just below where Turner had been dropped in 1889, and it was found impossible to take her any farther at that stage of the water. The freight was accordingly landed, the steamer returning to the barge for another load in an attempt to relay the entire consignment up to where the first lot had been dropped. The launches meanwhile relayed between this point and Rampart House, and succeeded in getting up a considerable quantity. No monuments could be discovered in the cargo of the Tanana, and it appeared that they had missed connections at Vancouver, and accordingly the small launch was despatched to Circle, where by means of the wireless, it was learned that the monuments were on their way down from Whitehorse.

Shallow water on the Old Crow River.

The Tanana, of the Northern Navigation Co., " wooding-up" on the Porcupine River.
Meanwhile the Tanana had been making a good fight against heavy odds relaying freight, and taking advantage of a short rise of the water in the river, she had managed to get one load as far as Rampart House, but on her next trip up she struck a rock and sank, though fortunately in only a few feet of water, and after floating her, the captain returned to Circle and wired for a smaller boat to complete the work. The Reliance accordingly was sent up, and later on, profiting by another slight rise of the river, succeeded in getting the rest of the freight up to the post.

Circle, Alaska.

Vaccinating a half-breed family.

With the supplies almost at Rampart House, and the monuments well on the way, things again assumed a roseate hue, when suddenly trouble loomed up again. The physician attached to the United States party discovered an Indian girl at Rampart House suffering from what he diagnosed as smallpox. All there, both whites and natives, were at once placed under observation or in quarantine, everyone was vaccinated, and every precaution taken to confine the outbreak. The Yukon Government at Dawson responded promptly and liberally to a call for aid, and sent in a constable of the Royal Northwest Mounted Police to enforce quarantine, and a male nurse to assist the United States doctor, who was placed in charge of the outbreak, besides providing a plentiful supply of disinfectants and vaccine. The disease, however, was not stamped out until winter, the Government having meanwhile built a temporary hospital and sent in other nurses.

The necessity of keeping the survey parties away from Rampart House complicated matters somewhat and caused considerable inconvenience, but fortunately not one member of the survey contracted the disease. The parties re-assembled in the fall at Camp Tittmann, about sixty-five miles below Rampart House, and were taken to Fort Yukon on the steamer Delta, and transferred to the Sarah, bound for Dawson, reaching there on September 24. The horses, both United States and Canadian, were shipped to Coffee Creek, from which point they were driven to the upper White River to winter.

In spite of its many difficulties and inconveniences, and not a few hardships, the season of 1911 was very successful. In addition to the vista-cutting and monumenting south of the Porcupine, already noted, the topography which terminated in 1910 at a point about fifty miles south of the Porcupine, was carried north to Joe Creek, forty miles from the Arctic Ocean, the triangulation party finishing its work about five miles south of the creek. Two bases were measured, one being that laid out in 1910 south of the Porcupine, and the other in the valley of the Firth. The

Camp on Rapid River, north of Rampart House.

Survey pack-train crossing the " glacier " in Firth River Valley, July 1911.
line-projection party had succeeded in getting its work to within twenty-five miles of the Arctic Coast, and would probably have reached the coast itself, had the pack animals not strayed, two weeks of valuable time elapsing before they were again rounded up. North of the Porcupine the monumenting had been completed as far as the Old Crow River, and the vista-cutting and stadia measurement as far as Joe Creek.

The Geological Surveys of the United States and Canada, co-operating with the Boundary Survey, sent in small parties this season to make a geological reconnaissance of the country traversed by the line, their transportation and subsistence being furnished by the Boundary Survey parties. The Canadian ${ }^{1}$ geologists worked south of the Porcupine and the United States geologists ${ }^{2}$ to the north of that river.

Much thought and consideration had been given by the Chiefs of Party to the question of leaving a party at Rampart House, or somewhere north of there, during the winter of 1911-12. Advantage could be taken of considerable good working weather in the fall after the parties going out had left, and in the spring before they would be able to return, and it was thought that considerable supplies for the following

A typical Indian encampment. season could be distributed north along the line by dog teams during the winter. On the other hand, the expense of such a party would be considerable, and it seemed advisable to avoid it if possible. At the close of the season of 1911, in view of the good

[^5]

Ice going out of the Porcupine River at Rampart House, May 1912.
progress made during the season, and of the comparatively small amount of work remaining for 1912, the Canadian Chief of Party decided to take his whole party out, while the United States Chief decided to leave in a small party to distribute supplies, and, more particularly, to overhaul the launch at Rampart House, as he wished to have it available to take advantage of every possible day of the spring high water to forward supplies up the Old Crow. Accordingly a small United States party wintered at Rampart House, and as the supplies brought in on the Tanana contained a complete winter outfit for a party of considerable size, there was no difficulty in outfitting them properly. By a peculiar coincidence, the party wintered in the building erected and occupied by Turner and his party in 1889-90. The local trader, who had been living in it for some years, built a new home into which he was able to move just in time to permit the survey party to take up their winter quarters in the old building. It was necessary, however, to build a large warehouse in which to store, during the winter, the three hundred tons of feed and supplies.

The winter proved to be uneventful, and the weather was comparatively mild, the lowest temperature recorded being -50° Fahrenheit. Early in April, supplies were taken out along the boundary trail as far as Surprise Creek, and as soon as the Porcupine opened up, the launch, which had been overhauled during the winter, was sent to the Old Crow with ten tons of supplies. The Old Crow, however, did not open until a few days later, and the launch was joined at the mouth of the river by the Canadian launch which had wintered at Dawson, and had been overhauled there. Together they worked their way upstream after the ice had broken up, and were successful in getting a considerable quantity of supplies up to the vicinity of the line, while later on the United States launch actually landed one load some miles above the line-crossing, a heavy rain giving a good stage of water for a short period.

The annual joint report of the Commissioners, provided for in Article IV of the Convention of 1906, and covering this season's operations, reads as follows:-

Fifth Joint Report of the Commissioners for the Demarcation of the Meridian of the 141st Degree of West Longitude.

The undersigned Commissioners, appointed by virtue of the First Article of the Convention between the United States and Great Britain, signed at Washington on the 21st of April, 1906, have the honor to present their Fifth Annual Report upon the progress of the demarcation of the 141st Meridian, where it forms the boundary line between the United States and Canada.

By reference to our Fourth Annual Report it will be seen that at the close of the survey season of 1910 the line-tracing had been completed from near Mt. Natazhat in latitude $61^{\circ} 34^{\prime}$, northward, to latitude $67^{\circ} 33^{\prime}$. During the season of 1911 the line-tracing was carried a distance of about 124 miles to latitude $69^{\circ} 20^{\prime}$, at which point the Arctic Ocean was plainly visible but a few miles distant.

The triangulation was carried in 1911 from latitude $67^{\circ} 29^{\prime}$ to latitude $68^{\circ} 54^{\prime}$, a distance of 100 miles, and the topography from $66^{\circ} 43^{\prime}$ to $69^{\circ} 04^{\prime}, 164$ miles.

Vista-cutting and stadia measurements were carried on by two parties, one of which, working northward from the point reached last year between the Yukon and Porcupine rivers, completed 115 miles, and the other, working northward from the Porcupine River, completed 99 miles.

The final monumenting was completed on 25 miles of the line between the Yukon and Porcupine Rivers, and on 75 miles north of the Porcupine River.

The epidemic of smallpox at Rampart House, which developed from one case on July 23 to 71 cases on September 10th, delayed none of the parties in the field, as they had gotten well away from Rampart House before the disease appeared. Probably if it had not been for the smallpox, some topography would have been done in the fall in the vicinity of the Porcupine above and below Rampart House. Instead, however, of waiting there for the steamer, the parties were obliged to assemble at a point some 65 miles lower down the river.

It was not possible to use any Indians at Rampart House, as we intended, for handling the 300 tons of freight brought up the river during the summer by the Northern Navigation Company's boats, and by the survey launches. This freight was all handled by the half-dozen members of the surveys party who happened to be at Rampart, every man turning in, even to chiefs and cooks, assisted at times by the launch crews. This prevented the officers in charge of the field work from going out north along the line during the latter part of July, as they had hoped to do, to study the situation for next year. If it had not been for this delay at Rampart, it is probable that a much greater proportion of next year's supplies would have been sent at least part of the way up the Old Crow. As it is, about 30 tons ónly are any further than Rampart House. It is hoped however, to have the launches in early next season and to have supplies at the line before the men and horses can get across country from Rampart House.

Respectfully submitted,

O. H. TITTMANN,
United States Commissioner.
W. F. KING,
H. B. M. Commissioner.

Washington, December 29, 1911.

SEASON OF 1912.

PARTY ORGANIZATION.

	For the United States.	For His Britannic Majesty.
Chiefs of Parties.	Thos. Riggs, jr. A. C. Baldwin .	J. D. Craig, D.L.S.
Assistants.	W. B. Reaburn W. B. Gilmore D. W. Eaton. W. C. Guerin. F. S. Ryus. C. V. Guerin.	D. H. Nelles, D.L.S. Fred. Lambart, D.L.S. Thos. P. Reilly.

Survey horses after wintering on the bars of the upper White River

Field Work.

The season of 1912 opened with everyone determined to put forth every effort to complete the work through to the Arctic Ocean. It was also decided to make an attempt to connect Herschel Island with the boundary triangulation, the island being only some forty miles east of the meridian. Although under ordinary circumstances this would not have been a very great amount of work to accomplish in one season, the shortness of the season in this latitude and the distance of most of the work from the base of supplies and from steamboat navigation rendered large parties quite as much a necessity as ever, and eighty-four men and one hundred and fifty horses were employed.

The horses wintering on

Fleet of Survey Launches on the Old Crow River, twenty miles below the Boundary. the White River had suffered severely from a scarcity of feed due to several unforeseen causes, and many of them had perished, and it became necessary to purchase others "outside" to replace them. These new horses were taken in to Dawson, as usual, down the trail from Whitehorse with the men, reaching Dawson on May 22. The horses remaining from last season were picked up at Coffee Creek, where the survey cache of blankets, saddles and eight tons of feed had been destroyed by a bush fire a few days previously.

A close examination of the inventories had shown that there were practically enough supplies in storage at Rampart House for the use of both parties, though the greater portion of these were United States property. Accordingly, very few new supplies were taken in with the parties, the Canadians agreeing to purchase what they needed from the United States parties at actual cost price, landed at Rampart House.

By going down with the mail by stage and launch, the Chiefs of Party were able, as usual, to reach Dawson ahead of the parties and to make all necessary arrangements in advance so that there would be practically no delay, and, leaving there on the steamers

St. Michael and Susie, of the Northern Navigation Company, the parties were transferred to the Tanana at Circle, and were landed at Rampart House in less than five days from Dawson.

This year there was no gathering of the natives to welcome the survey. Although it was practically certain that the germs of infection of the outbreak of the previous season had been carried in from Dawson in clothing sent to the Indians as a gift, the Indians themselves held the survey responsible, and gave it a wide berth in 1912.

By June 5 all the parties had left for the scene of their season's work, to be followed shortly by the joint inspection and supervision party, under the Chiefs of Party, who started north on the 14th. This latter party spent a day at the Old Crow, seeing that the launches were being handled to the best advantage, and putting things in such shape that this point could be used as the main base of supplies for the season. From the point where the low water of the river forced the larger launches to cache their loads, the supplies were forwarded by two poling boats, one handled as usual by two men, and the other towed by the smaller Canadian launch until the further lowering of the water forced the latter to retire, when it was supplanted by manpower. In this manner a depot containing supplies sufficient for the season for all parties was established on the Old Crow a short distance west of the line.

After a few days' delay in the Firth valley to allow feed to be relayed ahead, a visit was made to the camp of the vista-cutting and stadia party at Joe Creek, and their plans for the season discussed. At the combined camp of the topographic and triangulation reconnaissance parties, well up towards the head of Malcolm River, and only about thirty miles from the Arctic Ocean, the chief of the latter party was found to be seriously ill of what appears to have been congestion of the lungs. Although there were few medical comforts at hand, he survived the ordeal of camp
medical methods, but spent the remainder of the season convalescing and in returning to Rampart House. His illness had put a stop to the reconnaissance work, and so had delayed the triangulation and consequently the topography. His work was taken over by the inspection party, and operations proceeded until all branches of the work had been completed through to the coast. The triangulation was extended eastward along the coast about twentyfive miles, but bad seeing conditions prevented the triangulation connection with Herschel Island, although two men who had been sent there

Pack-train of survey dogs ready for the trip from Rampart House to Herschel Island. from Rampart House occupied a heliograph station on the highest point of the island for over a month in the hope of being seen from some of the triangulation stations. The topography was brought up to the coast, and in addition an area was mapped extending along the coast to the east about six miles, and to the west fifteen miles. The inspection party having taken up projection work, set the last point on line, on the Arctic Coast, on July 18 to the accompaniment of appropriate ceremonies and the unfurling of the standards of the United States and Great Britain. The stadia work and monumenting reached the coast also, while vista-cutting ceased some thirty-five miles south of there, that portion of the country being devoid of timber, unless a few scattered patches of alder and willow could be so classified. Upon the advice of old timers at Rampart House, the various parties had been provided with oil-stoves and fuel for cooking purposes, as a shortage of wood was anticipated. It was found, however, that from the point where timber failed, by choosing camping places carefully, sufficient

Camp of monumenting party at the Arctic Coast.
willows could always be found for cooking, and at the coast itself there was a plentiful supply of driftwood carried down presumably by the Mackenzie. This driftwood has been referred to by all the early explorers, and is so plentiful that it is used for a supplementary fuel supply by the steam whalers fishing along the coast and to the north.

The Arctic coast is paralleled by a strip of tundra which, in the vicinity of the line, is from twelve to fifteen miles wide, and travelling over this was found to be very trying to both man and beast. It sheltered myriads of mosquitos which arose in clouds whenever the wind dropped sufficiently to allow them out, and whether or not it was that the blood of white people and of southern horses was specially palatable to them, they certainly had most ravenous appetites. "Seeing" conditions at the coast were bad, and delayed projection and triangulation greatly. The air seemed to be in a state of continual disturbance, caused possibly by the contrast between the airconditions over the tundra, heated almost continuously by the sun, and the adjoining expanse of ice and icecold water of the ocean. Haze was very persistent, and mirages were frequent, beautiful and at times aweinspiring. On one occasion, when moving camp along

Looking west along the coast from the Boundary. Demarcation Point in the distance.
the coast, one of the pack-trains made a detour of several miles to avoid an imaginary lake. Needless to say, the packer in charge was not allowed to forget this for sometime. The sun at midnight when it approached the northern horizon assumed most fantastic shapes, but its rays, even at noon-day, seemed to be powerless to counteract the piercing effects of the prevailing east and northeast winds.

The fore-heliotrope party on their arrival at the coast on July 12 found the ice of the ocean practically solid, except for a narrow lane of water along the shore. By the 19th the ice was considerably broken up and was moving slowly to the westward under the influence of the prevailing winds, and by the 26th the ocean was practically open except for large ice-flows moving westward at some distance from the coast, or apparently stranded on a reef or in shallow water which seemed to stretch along the coast at a distance of a mile or so from the beach.

Franklin's Demarcation Point proved to be about seven or eight miles west of the line, and was a most interesting place. It had formerly been the winter rendezvous of the Eskimos of this district, but was abandoned for Herschel Island when the whalers adopted this latter point as their winter quarters. The ruins of their old huts or "barabaras" still remain on the point, and many curios were picked up in and around them. The point is not a prominent feature of the landscape as it is merely a long, low, narrow sand-spit, without a vestige of vegetation of any kind, and is only some seventy or eighty feet wide where it joins the low, monotonous coast line, and it does not project out to sea but simply forms a narrow barrier which extends nearly across the mouth of Demarcation Bay.

Only a few Eskimos were seen by the parties. One Eskimo with his family was camped on the beach at Clarence Bay, five miles east of the line, and with typical

An abandoned " barabara " at Demarcation Point.

Eskimo hospitality, he invited the two members of the fore-heliotrope party to share his frugal repast of fish and tea when they visited his camp, and he took great pride in displaying the family treasures, such as a broken alarm clock, a modern trunk in good condition, and other marks of civilization which he appeared to value very highly. Most of the natives, it was later ascertained, were at Fort McPherson, where Bishop Stringer, of the Church Missionary Society, was making a visit in the course of one of his regular northern trips. Immediately after his departure, the Eskimos hastened over to see the survey, and if possible to do a little trading with the members, but they arrived too late, just as the last party was leaving for the south.

As it was a journey of nearly three weeks from the coast to Rampart House, where the parties were to meet the steamer on August 31, a start south had to be made early in the month to allow for unavoidable delays and to ensure being at Rampart House on time, and the last of the parties left the coast on the 6th of August.

On the journey south the joint inspection party resumed its own special duties and made an inspection of the monumenting and of the topographic work as far as the Porcupine, reaching there on August 16. Beginning with the large monument on the Arctic Coast, the monuments were numbered consecutively by the monumenting party as they returned south.

The steamer Delta reached Rampart House on August 30 , and the parties said farewell to the spot which had been their base for three seasons, and after a good trip down the Porcupine reached Dawson in due course.

The Canadian party which had been working south of the Porcupine had been able to complete the monumenting and vista-cutting early in July, and had again started south from Rampart House, inspecting the work along the line, numbering the monuments and observing at points where weakness had developed in connecting

Monument No. 1, and Line-projection Station " Cetera."
the monuments with the triangulation. They reached the Yukon about September 10, and rafted to Eagle, where they boarded the steamer carrying the other members of the survey parties from Fort Yukon to Dawson.

A party from the Canadian Geological Survey ${ }^{1}$ this year completed the geology between the Yukon and the Porcupine. This party went in with the Boundary Survey to Rampart House and worked south to their 1911 work, which they passed

Freighting up the Chitina River on the ice. through, resuming at the point where they had begun in 1911, and from there continued to the Yukon. Such supplies as they were unable to take with them from Rampart House were sent up Kandik River and Tatonduk River by poling boats. The United States geologists also continued their work north of the Porcupine and completed it through to the Arctic. ${ }^{2}$

In 1912 a beginning was made on another phase of the work on the 141 st Meridian, viz., the location of the line across the glaciers and the vast ice- and snow-clad region between Mount Natazhat and Mount St. Elias. Owing to the great elevation of the Natazhat ridge at the point where it is crossed by the line, and to the rugged character of the country immediately south of there, as disclosed by the attempt to climb Natazhat in 1909, it was judged practically impossible to project the line directly south through this region by

A cache of horse feed. the methods which had been used up to this time. The only alternative was to go round, and the most practical way appeared to be to carry a scheme of triangulation from the western end of the White River system of 1909 across Skolai Pass, south and up the valley of the Chitina to the line. This work was undertaken by a United States party, and as practically nothing was known of the country at the head of the

[^6]

The sea of mountains south of Mount Natazhat. Looking east of scuth from triangulation station "Crag."

Chitina, except in a very general sense, the reconnaissance was largely of an exploratory nature.

Going in from Cordova in March by the Copper River and Northwestern Railway to McCarthy, the party headed for Skolai Pass at the head of the White River, with their supplies on horse-drawn sleds. Bad weather, more especially on the higher mountains, hindered the work greatly, but four stations of 1909 were recovered and the triangula-

Bridging the Chitina River. tion was completed across the Pass and down Skolai Creek, and late in July a junction was effected with the work of another small party which had been working up the Chitina towards the line, in the vicinity of which, on the Chitina and Anderson Glaciers, considerable planetable topography had been done. After meeting, the parties joined forces and measured a base in the Nizina valley and then retreated, reaching Cordova about the end of September. Near the Nizina River the boundary survey elevations based on the precise levels datum at Monument No. 126, were connected with two bench-

The divide (5,800 feet) between the heads of Skolai Creek and Chitistone River.
marks of the United States Geological Survey based on railway levels carried up from Cordova, the mean discrepancy being 1.6 meters.

A good season's work had been accomplished and everything was in good shape for 1913, when it was hoped to complete the projection of the line and the topography as far south as Mount St. Elias. Reading the modest account of the season's operations, one can hardly realize the hardships and difficulties met with and overcome by the parties. One section lived for some time on two sheep and some ptarmigan which they were able to shoot, and a six-year-old sack of flour which they fortunately discovered cached

in a tree. One man fell over a bluff and, though unhurt, decided to leave the survey, as did another who fell into a crevasse and escaped uninjured. A horse that fell over a cliff was killed, and there were many close calls for the men climbing the steep bluffs of the snowcovered mountains. Then in the fall, snowslides having incapacitated the railway, the parties had to walk for sixty miles and descended the Copper River for eighty-five miles in overloaded smallboats.

Over the white ice of the Russell Glacier. Elevation about 5,000 feet.
The annual joint report of the Commissioners provided for in Article IV of the Convention of 1906 and covering this season's operations, reads as follows:-

Sixth Joint Report of the Commissioners for the Demarcation of the Meridian of the 141st Degree of West Longitude.

The undersigned Commissioners, appointed by virtue of the First Article of the Convention between the United States and Great Britain, signed at Washington on the 21st of April, 1906, have the honour to present their Sixth Annual Report upon the progress of the demarcation of the 141st Meridian, where it forms the boundary line between the United States and Canada.

By reference to our Fifth Annual Report, it will be seen at the close of the survey season of 1911, the line tracing had been completed from near Mt. Natazhat, in latitude $61^{\circ} 34^{\prime}$, northward to
latitude $69^{\circ} 20^{\prime}$. During the season of 1912 the line was carried northward 22 miles to the shore of the Arctic Ocean in latitude $69^{\circ} 39^{\prime}$.

The triangulation was carried in 1912 from latitude $68^{\circ} 54^{\prime}$ to the Arctic Ocean, a distance of 51 miles, and extended eastward along the shore 25 miles, to determine the relation of the terminal monument to the general shoreline.

Topography was carried northward along the meridian by one double topographic party from latitude $69^{\circ} 04^{\prime}$ to latitude $69^{\circ} 39^{\prime}$, a distance of $401 / 2$ miles, and then expanded westward along the coast to longitude $141^{\circ} 30^{\prime}$ and eastward to longitude $140^{\circ} 48^{\prime}$. This topography takes in the natural features nearest the boundary-Icy Reef, Beaufort Bay, and Demarcation Point to the west, and Clarence Bay to the east.

Vista-cutting and stadia measurements were carried on from latitude $68^{\circ} 50^{\prime} 40^{\prime \prime}$ to the ocean coast, a distance of 58 miles.

Another vista-cutting and stadia party operated south of the Porcupine River a distance of 33 miles, connecting with the work completed in 1911.

The final monumenting, north of the Porcupine River, was completed to the ocean from latitude $68^{\circ} 30^{\prime}$, where it terminated in 1911, over a distance of 80 miles, and, south of the Porcupine, over 78 miles.

In all, 56 monuments were placed this year.
The monuments were all inspected and numbered from the Arctic Coast to the Yukon River, the most northerly monument being No. 1. From the Arctic Ocean to the Yukon River there are 115 monuments in a distance of 344 miles, or an average of one monument to 3 miles.

The demarcation of the boundary line has therefore been completed north of the Yukon River. Between the Yukon River and Mt. Natazhat there remains only the inspection and numbering of the monuments which can be completed by a relatively small party during the coming season.

South of Mt. Natazhat the boundary extends to the vicinity of Mt. St. Elias, a distance of 84 miles, in a very difficult mountainous region. A triangulation party and a topographic party were sent in to make surveys preliminary to the defining of the line in this region. Triangulation was carried from trigonometric stations which had been established in Scolai Pass in 1909, down Scolai Creek, across country to the Chitina River, and up Chitina River to within about 30 miles of the boundary, a distance altogether of about 90 miles. Plane-table topography was carried across the boundary, from the mouth of Canyon Creek on the Chitina, up the valley of the latter, taking in the tops of ridges on either side, and photographs were taken from which a considerable additional area may be plotted.

Respectfully submitted,

> W. F. KING,
> H. B. M. Commissioner.

O. H. TITTMANN,

U. S. Commissioner.

Washington, December 12, 1912.

SEASON OF 1913.

PARTY ORGANIZATION.

	For the United States.	For His Britannic Majesty.
Chiefs of Parties.	Thos. Riggs, jr. A. C. Baldwin .	J. D. Craig, D.L.S.
Assistants.	W. B. Reaburn D. W. Eaton. C. V. Guerin.	Fred. Lambart, D.L.S. T. C. Dennis, D.L.S. D. J. Fraser, D.L.S. E. W. Nesham, D.L.S. H. S. Mussell. Thos. P. Reilly.

Joint inspection party's camp on the Sixtymile River.

Field Work.

In 1913 the finishing touches were given to the Yukon River-Mount Natazhat section of the line by a joint inspection party headed by the United States and Canadian Chiefs of Party. Sailing luxuriously downstream from Whitehorse to the Boundary on a comfortable steamer after the opening of navigation on Lake Laberge proved to be an agreeable contrast to the more or less strenuous trips of the preceding years, and camp was made at the Boundary on June 26.

Caches at Ladue Creek and at Canyon City had been established during the winter, so that in moving it was generally

A ticklish spot. possible to take the complete camp outfit along at one loading of the horses, though the benefits of this were largely counterbalanced by the delay caused by the thick pall of smoke which hung over the whole country at the beginning of the season.

All the monuments in this section were numbered, eight new ones were interpolated at points where the line was considered insufficiently marked, these eight were connected with the triangulation, several weak points in the original triangulation were strengthened, and the last monument was set on a northerly spur of the Natazhat Range on August 21. In addition to this, a general inspection of the work was carried on with special reference to the alignment of the monuments and to the condition of their bases, these being the first monuments set, and the topography was also carefully examined. It was found that the whole work had been most carefully done, only one monument showing signs of the effects of frost. 23565-6

At times the trail led between the glacier
(Russell) and the valley wall.

The large monument on the north bank of the White had unavoidably been set on frozen ground, which in thawing had tilted the monument to the north. This was straightened up and made permanent by the installation of a heavy crib foundation, and by tamping in a large amount of sand and gravel.
A gold strike in the Chisana District, Alaska, was a source of excitement and annoyance to the party during the latter part of the summer. News reached the party while encamped on the Ladue, that the strike had been made and that a typical "stampede" was in progress from all parts of the Yukon and Alaska. Dawson, like all

The " Goat Trail " in Chitistone Valley.
other points, had a bad attack of the fever, and everyone who could possibly get away was heading for the new " diggings." Many of the stampeders followed along the survey trail from Glacier, and there was consequently a constant stream of visitors in camp. As usual, about seventy-five per cent of the stampeders were very inadequately equipped for a trip of this description, and as they seemed to consider a Government survey party a sort of general supply depot, it became the duty of the survey to provide meals for them, to sell them what provisions could be spared, and even to provide clothing and shoes, in addition to furnishing minute directions as to how to get to the diggings. The strike also caused considerable unrest among the men of the party, but they all remained loyal and saw the survey finished before heading for the diggings.

This completed the inspection and numbering of the monuments from the Arctic Ocean to Mount Natazhat, and the party started for the outside via the upper White River and Skolai Pass. On the trail over the pass, more stampeders were encountered, this being one of the popular routes in from Cordova. The same lack of preparedness was evidenced here by the throngs on the trail. Ill-equipped, without any idea of outdoor life, and treating their poor animals outrageously, they found the mountainous trail trying and dangerous, and the quiet, steady advance of the survey pack-train, with its well-broken animals, was a source of wonder and admiration to them, for they were ignorant of the fact that most of the survey horses were " old timers" at that sort of work.

At McCarthy, on the Copper River and Northwestern Railway, most of the men, after being paid off, immediately succumbed to a severe attack of gold fever, and headed for Chisana, the rest going to Cordova by rail, and thence to Seattle.

A Canadian triangulation and photo-topographical party operated this season in the district immediately south of Mount Natazhat. They went in by the old route over the winter trail from Whitehorse via Lake Kluane, and made their base camp

A bridge on the upper Klutlan River. near the foot of Klutlan Glacier. They succeeded in extending the triangulation south of Mount Natazhat several miles, and the information secured by the camera completed the belt of topography from Mount Natazhat south to the head of the Anderson Glacier, up which the topography had been extended by the United States party in 1912.

ASCENT OF MOUNT NATAZHAT.

This Canadian party had the distinction of making one of the highest climbs attempted in connection with the boundary work, and succeeded in reaching the

Dog teams were used when the horses could go no farther. summit of Mount Natazhat. In making this attempt it had been hoped that in addition to securing valuable photographs it would be possible to make a connection with the Southeastern Alaska datum by observing on Mount St. Elias and possibly on other mountains of the same range, but although these were visible on the way up, the party was enveloped in clouds while on the summit, and there were no practical results from the climb.

Mr. Frederick Lambart, the chief of the party, writes: "At this camp (8,150 feet) on the 18th of June we thought the opportunity had at last arrived, and the early morning saw us well on our way. In slightly less than seven hours we arrived at the summit of the ridge where the instruments had been cached, and dug them out from under five feet of snow, and then went on to a prominent snow dome, threè hundred and fifty feet higher up. For the last hour the clouds had been gathering,

A desolate camp behind Mount Natazhat.
and we realized now that our chances were hopeless. Feeling convinced that we could not hope to spend more time and energy on the chances of getting a bright clear day in the near future, I reluctantly decided to make the best of things as they were, and leaving one of the men at this point, about eleven hundred feet below the summit, to take photographs, the rest of us succeeded in reaching the top, after nearly three hours' hard work through the deep snow. All the anticipated pleasure of reaching the summit had vanished, and our only thought was to finish and get down as quickly as possible. This we certainly did in short order, remaining at the summit only ten minutes, during which time we made six exposures with a hand camera and set a pole with a large flag. During the return journey, which took five hours, we were enveloped much of the time in clouds, and it was intensely cold, with a heavy wind from the northeast."

At the close of the season this party floated down the White and Yukon Rivers in small-boats to Dawson, and thence came outside by steamer to Whitehorse as usual.

Other Canadian and United States parties spent the season in the country between the Anderson Glacier and Mount St. Elias, the purpose of the operations being fourfold: to complete the topography as far as St. Elias, to locate points on line and to project the line across the valleys at the head of the Chitina, to locate Mount St. Elias by triangulation, and, if possible, to ascend this mountain and locate the southern end of the meridian boundary.

These parties left McCarthy in March, the supplies being freighted as far as the Chitina Glacier by horses and sleds, then by pack-horses as far as possible, then by dog-teams and, finally, when even these could not be used, by back-packing. Deep snow and temperatures as low as -40° Fahrenheit delayed the work of transportation greatly, and it was late in April before the parties reached the point where the season's work was to begin.

One United States party, with a Canadian attaché, laid out a scheme of triangulation and observed the angles as far

Taking in supplies meant plenty of hard work.
as the Chitina Glacier, where a base was measured, and a computation and adjustment made of the work up to that point. An astronomical azimuth was also observed as a check for gross errors. The supplies being well in advance, and the work in general in good shape, about the first of June it was decided to make an attempt to climb St. Elias. After this trip, the particulars of which are given later, the triangulation was completed to the Boundary and a point was located on the meridian from which the proper azimuth was turned off and three monuments were set on line, the most southerly permanent mark on the meridian, Monument No. 191, being set on July 28 on the south side of the Logan Glacier, after which observations were secured connecting Mount St. Elias with the triangulation of the 141st Meridian.

Meanwhile a United States party had completed the topography in the vicinity of the Anderson Glacier, using both

On the summit of Mount Natazhat.

A Chitina River dog team.
the plane table and the photo-topographic camera; a Canadian party had carried a photo-topographic survey up the Logan Glacier nearly twenty-five miles above the Boundary, while the topography between the Logan Glacier and Mount St. Elias had been secured photo-topographically by a Canadian and a United States party.

THE ASCENT OF MOUNT ST. ELIAS.
Mount St. Elias first became known to the civilized world when it was sighted by

Crossing the Chitina River. This sled is placed on another temporary sled to keep the load above water.

Vitus Bering in July 1741. ${ }^{1}$ Following the example of many of the old navigators, he named the towering, snowclad peak after the patron saint of the day, thus beginning the history of a mountain which was not conquered by man until more than a century and a half had elapsed.

We find only brief mention of the mountain until 1874, when the United States Coast and Geodetic Survey sent W. H. Dall and Marcus Baker to make observations for its position and elevation, and to make a survey of the coast line in its vicinity, and it is in their records that we find the first mention of the vast glacier that lies between the sea coast and the foot of the mountain, and to which they gave the name of Malaspina. ${ }^{2}$.

The year 1886 marked the beginning of a series of attempts to reach the summit of the mountain. The first of these was organized in that year by the New York Times, and the party, under Lieut. Schwatka of the United States Army, after landing at Icy Bay, travelled almost due north for about sixteen miles where they were forced to turn back at an elevation of about seven thousand feet. ${ }^{3}$

Two years later a similar attempt was made by an expedition under W. H. and Ed. Topham, of London. They followed the route of the Times party, but pressed round farther to the southwest flank of the mountain, and succeeded in reaching an altitude of 11,400 feet before they were compelled to retire. ${ }^{4}$

The scientific interest aroused by these two expeditions resulted in the despatch of a third in 1890 under the joint auspices of the National Geographic Society and the United States Geological Survey, under the direction of Prof. I. C. Russell. In 1890 he spent three months on the glaciers, and although he attained an altitude of only 8,000 feet, his report contains the best and most complete information of the glacial formation of the region, as well as other valuable scientific data. ${ }^{5}$

The following year, under the same auspices, and

Care was necessary in moving round the instrument.

[^7]

SKETCH MAP OF THE MOUNT ST. ELIAS REGION
Showing routes travelled by expeditions to Mount St. Elias; that in command of le Duc d'Abruzzi being the only one to reach the summit.

A rough spot for horses.
profiting by the experience gained on the glaciers, he met with better success, and though unable to reach the summit, he attained an elevation of 14,500 feet at a point on the northeast shoulder, from which he was able to overlook the hitherto unknown region to the north, embracing the district which was later to be the scene of operations of the boundary survey. ${ }^{1}$
In 1892, Mount St. Elias was again a center of attraction, though for a different reason. The observations by

Camping in deep snow in March, 1913. W. H. Dall in 1874 placed the mountain in United States territory, slightly west of the 141st Meridian, When the question of the boundary between Canada and Alaska was under discussion in the early nineties, it became desirable to confirm this position by a more accurate location of the peak, and in 1892 a party of the United States Coast and Geodetic Survey, working under J. E. McGrath ${ }^{2}$ in connection with

[^8]
" The entire day was spent crossing crevasses."
the boundary survey, made an extensive trigonometric survey in the vicinity of Yakutat Bay. This survey placed the summit of the mountain in latitude $60^{\circ} 17^{\prime}$ $35^{\prime \prime} .10$ and longitude $140^{\circ} 45^{\prime} 47^{\prime \prime} .32$, and it thus became one of the boundary peaks for Southeastern Alaska, as it was east of the 141st Meridian. At the same time the elevation was determined to be 18,024 feet.

The first determination of the elevation had been made in 1791 by Malaspina in the service of Spain, his observations giving $17,851^{1}$ feet as the altitude of the summit, this figure being more nearly correct than any subsequent one until McGrath's determination of $1892 .{ }^{2}$

In 1897 the New York Times sent out their second expedition, under Mr. H. S. Bryant, to attempt to reach the summit. Attacking it from the south they were again unable to get above 8,000 feet. ${ }^{3}$

In 1896, the Duc d'Abruzzi decided to add to his laurels by making an attempt at the ascent of Nanga Parbat, a giant of the Himalayas, towering 26,000 feet above the sea. Leaving for India late in the year, he was forced to abandon this attempt by a famine and severe plague which was rampant in one of the provinces through

[^9]
"An elevation of thirteen thousand five hundred feet."
which his caravan would have had to pass en route to the mountain. He was not to be denied a climb, however, and Mount St. Elias became his goal. With four picked Italian guides and four other companions he left Turin in April, 1897, and proceeded to Alaska by way of London, New York, and Seattle. He landed in Alaska on June 23 near the mouth of the Osar River, and after thirty-eight days of exertion and hardships on the glaciers, the gallant little band of Italians, led by the Duke himself, was rewarded by planting the tricolor of Italy on the summit of Mount St. Elias. The successful culmination of this attempt was largely due to the well-known organizing capabilities of the leader, coupled with his indomitable perseverance and the spirit of enthusiasm with which he inspired his followers. ${ }^{3}$

Both Russell and Abruzzi described the region north of St. Elias as consisting of snowfields, broken by many high peaks. Russell sums up his description by saying: " If the reader who is familiar with the Great Basin would fancy the most desolate portion of that arid land buried beneath a thousand feet of snow and ice, leaving only the southern slopes of the most rugged peaks exposed, he will have a mental picture of this land of desolation north of St. Elias."

[^10]
Mount Logan (center) and Mount King (right).

"We scaled a succession of cliffs."

Over this "land of desolation" passes the 141st Meridian south from Mount Natazhat and strikes the St. Elias range west of the summit. The commissioners having agreed that the boundary should be drawn from Mount St. Elias to the 141st Meridian on such a course parallel to the coast as should be found most suitable in the topographic conditions, ${ }^{1}$ it was for the purpose of determining these conditions so that this course and the junction of the line with the meridian might be ascertained, that the survey party entered the St. Elias region.

Mr. A. C. Baldwin, who was in charge of the party, gives the following graphic account of the attempt made to reach the summit of the mountain:-

The party consisted of five members of the United States party and two Canadians, assisted on the first stage of the journey up to the first divide south of the Logan Glacier by two others of the United States party. The equipment selected was as light as possible to meet the conditions of glacier travel and of mountaineering. The tents were of light silk, so designed that one ordinary alpenstock was all the pole necessary for each tent. For cooking, the Lovett oil-stove was used, with a patent reflector oven, the utensils being of aluminum. Each man had an eiderdown sleeping-robe, with a rubber sheet and canvas cover or ground-sheet, and parkas and extra woolens were taken along for the higher altitudes. In addition, ice-axes, climbing ropes, snowshoes, ice-creepers, and other requisites were included in the outfit. The instrumental equipment consisted of a photo-topographical camera and plates, a 4 -inch transit, two hand cameras, an aneroid barometer, and a compass.

Provisions for one month were taken, and did not differ materially from those used ordinarily on the survey work. Rice, sugar, bacon, pilot bread, dehydrated cranberries, and tea formed the principal diet and proved very satisfactory. ${ }^{2}$

The means of transportation were two 7 -foot Yukon sleds, three men being harnessed to one and four to the other, enabling an average of one hundred pounds to the man to be drawn on them.

Sledding in to Mount St. Elias.

[^11]At a camp in a small patch of willows on the south side of the Logan Glacier, the supplies were loaded on the two sleds which had been backpacked from the foot of the Chitina Glacier, and on June 13 sledding was begun up a small glacier flowing into the Logan from the south, about six miles being made the first day. From here on, the soft snow was from four to six feet deep, and promised to prove a serious handicap to further progress with sleds. However, adjusting snowshoes, and roping ourselves together, three of us proceeded in single file over the expanse of snow and thus "broke trail" for a distance of six or seven miles and, in returning, tramped down the snow still more, hoping that the trail thus beaten down would freeze sufficiently during the night to support men and sleds.

On arrival at camp we found the other members of the party gathered round the oil-stoves shivering over their first meal on the ice. No one lingered over this, for a cold piercing wind from up the glacier drove us to the protection of the tents, and to blankets laid on small sharp rocks which formed a "cushion" over the solid body of the ice.

Our hopes were realized, for in the morning we found that the trail of the previous day had frozen so that it could be travelled on without the use of snowshoes, and everything was moved to the next camp. In the afternoon three of us again snowshoed ahead to break trail and if possible, to reach the divide, in order to gain a view of St. Elias, and so select the shortest and best route to

"A thermos bottle on an alpenstock marked the camera station." its base.
Gaining the summit of a 10,000 -foot peak about seven in the evening, we caught our first glimpse of our goal. We were overlooking a wide valley sweeping in graceful curves southwestward towards the Pacific. From side to side it was probably twenty miles in width. A main stream of ice flowed through it, and this we took to be Columbus Glacier. Many smaller streams flowed into the main one, and all were covered with a mantle of snow whose whiteness was emphasized by the numerous black peaks that seemed just able to hold their heads above the flood of snow.

Near the head of the valley was

Camp on an island of rocks. the great towering mass of Mount St. Elias, rising nearly eleven thousand feet above the valley floor. In the evening light it recalled a huge white ghost, though in shape it resembled a great sealion, lying head erect, and facing the east. The summit is conical and about one thousand feet higher than a shoulder which extends two miles in a westerly direction and then breaks off precipitously for two thousand five hundred feet to a saddle connecting with the coast range of mountains.

The original plan was to attempt the ascent from the northeast, the side from which Russell and

"The great towering mass of Mount St. Elias."
Elevation of snowfields in foreground about 7,000 feet.

Nearing the summit of the divide between Logan and Columbus Glaciers.

Abruzzi had attacked it. But this idea was given up when it was seen that this route would require several additional miles of sledding, and would involve the crossing of a second divide. The north side looked possible for an ascent, but near the top a steep ice-slope would be encountered. The route from the west was shorter still, and seemed only slightly steeper than that on the north, and it was decided to make the attempt by this route.

The days spent crossing the snowfields were much the same as far as the work was concerned. Sledding was begun shortly after midnight, and was continued until the snow became too soft to travel on. The elevation ranged from seven to eight thousand feet, and there were no crevasses in the glaciers. No animal life existed except a few flies and moths, and a black insect about onesixteenth of an inch in length that at times animated the snow. On the exposed rocks there was sometimes found a species of moss with a purple blossom. Occasionally a dead bird was seen, and later at the camp, at an elevation of 13,500 feet on St. Elias, three small birds flew overhead.

The temperature conditions were peculiar. At midnight a wind was generally blowing, and it was cold enough to freeze water in pails and to form a strong crust on the snow. At two or three o'clock the eastern sky would begin to glow, and as the sun crept higher and finally rose above the mountains it warmed the chill glacier air. By eight or nine o'clock the snow would be soft, and sledding difficult. The direct rays of the sun and the light reflected from the snow burned our faces and raised new blisters each day. In the afternoon, the tents would sometimes be uncomfortably warm, but as soon as the sun disappeared, the temperature dropped rapidly, and in a short time ice would be formed.

By June 22 we had traveled across over fifty miles of this kind of country beyond timberline, and had reached the base of Mount St. Elias. During all this time the sky had been clear, but on the 23 rd a thick fog settled down over the peaks, and the weather became unsettled.

Our camp was now at an elevation of 7,500 feet, and to the east the western shoulder of St. Elias rose 9,000 feet in sheer height, too steep for the snow to cling to. At intervals, from the dizzy heights an avalanche of snow would be seen creeping down the wrinkled sides. Seconds afterwards a dull roar would be heard, and, as the moving mass gained in proportions and speed, it swept everything before it, and reaching a precipice, would shoot out in a stream like foaming water and disappear in the depths below. Long afterwards, clouds of snow-dust hung in the air and the dull rumbling continued.

It was useless to attempt to climb this west face, and therefore, on the 23 rd , a reconnaissance was made up a steep glacier that led to a saddle with an elevation of 12,000 feet. The entire day was spent crossing crevasses and cutting steps and locating a feasible pack-route. Late in the afternoon we reached the saddle, and through the fog could dimly see a slope that lead to the high shoulder, and appeared to be climbable.

The following day camp was moved by sleds to the 9,500 -foot level and then back-packing was begun. Camp was raised 2,000 feet at a move, packs of about forty pounds each being taken twice a day over this stretch. On the 28th of June, at five o'clock in the morning, we succeeded in getting the camp outfit to an elevation of 13,500 feet.

Looking to the south from this camp we could see below us the great Malaspina Glacier, and beyond it the Pacific Ocean. The Yahtse River was plainly visible, and in the sunlight, with every streamlet flashing, it suggested an arm of the sea. Icy Bay was also a noticeable feature, and stretching away to the west was the Coast Range at about our own level. Turning to the north we could trace our route over the snowfields as far as the Logan divide. Beyond there appeared on the horizon Mount Wrangell and Mount Blackburn and many other snow-covered peaks rivalling them in height, while one sharp peak in particular, seemingly more distant than the others, was very conspicuous. In every direction we could see a hundred miles or more, except to the northeast, the west shoulder of St. Elias cutting out the view there. It rose abruptly from camp 3,000 feet, while farther to the right, three miles distant and 4,500 feet above camp, stood our goal, the terminal cone of the mountain.

Rising at midnight on June 29 to get an early start for the final dash, we found that a dense fog had filled the valleys, and storm flurries were in evidence about the summits. Before an hour had passed snow began to fall, and it was midnight of the following day before the sky cleared, and even at that early hour the sun was lighting the summit of St. Elias. The instruments, food, and extra clothing were made up into packs, giving each man about twenty pounds, and about one o'clock a.m. the ascent was begun.

Although cameras were taken along, the difficulties of the first part of the climb proved so engrossing that picture making was forgotten entirely. We scaled a succession of cliffs, which one of the
men declared were so steep that he was leaning backwards most of the time. Hands were used quite as much as feet, and to secure a firm grip on the rocks, mittens were often removed, and although we were not aware of it at the time, several finger-tips were frost-bitten. When outcrops of rock were not being traversed, the route lay over ice-slopes where the cutting of steps was necessary.

After nine hours of difficult climbing we were within a few hundred feet of the top of the west shoulder, and the rest of the climb to the summit appeared to be over a gradual slope presenting no obstacles. Four of the party only were feeling slightly the effects of the altitude, and all were confident of making the remainder of the distance, when a storm, such as is known only at high altitudes, overtook us. At first we were loath to admit that it was anything but a slight flurry, and continued the ascent. It soon became evident, however, that it was to be of more than temporary duration and that even if the summit were reached instrument work would be impossible, and so, at an elevation of a little over sixteen thousand feet, we reluctantly turned back.

The descent was accomplished not without considerable danger, and great care was necessary to keep our footing, and in one place one of the men, who had been weakened by mountain sickness, slipped on an ice-slope and was well started on a swift glissade, when one of his companions below stopped him. Camp was finally reached at five in the afternoon.

Rations were now very low and, in order to make it possible to attempt another ascent, three of the men, who had been most affected by the rarity of the atmosphere, were sent to the base camp. Three others remained with me to await fair weather, but the storm continued unabated. We rolled ourselves in our robes for warmth, and only ventured out about once in every twelve hours to eat a little rice and bacon. At midnight of the 3rd of July the bacon was gone, and only a handful of the rice remained; eighteen inches of snow had fallen, and it was still coming down. The last hope of scaling Mount St. Elias had vanished, but we still hoped to be able to secure a round of photos at camp level. About three a.m. the clouds suddenly raised, and a camera station near camp was occupied. Then packs were made up and we hastily descended to lower altitudes.

At one place where in going up we had jumped a crevasse possibly four feet wide, when coming down we found its width doubled. No bottom could be seen, and there was no alternative but to jump it again. The landing on the opposite side was a 3 -foot ledge which sloped into a second crevasse. The man in the lead tied one end of the climbing rope round his waist, and taking a 50 -foot run, jumped the yawning opening, and landed with great precision on the narrow ledge. The packs were then passed over on the rope and the others crossed safely.

Reaching the lower camp that evening, an inventory of provisions showed that only four days' rations remained, so the next morning, the Fourth of July, we headed back towards timber and the main cache, occupying two camera stations that day. The following day a thick fog was hanging over the snow fields, but the shortness of rations made it necessary to keep moving, and during all this day and the two following days we sledded through the fog, unable to see more than a few feet in any direction, but fortunately able to keep our course by following the tracks we had made coming in nearly a month before.

On the fourth day we reached the Logan Glacier, and made a fire of wood for the first time in thirty days, and though our camp was pitched in only a small patch of willow, we all agreed that this looked larger than any forest any of us had ever seen.

The following day, after crossing the glacier, we found the balance of the party, who were very anxious about us and prepared to start out on a relief expedition.

By a rather fortunate coincidence, the highest camp occupied by the party on their attempted ascent of Mount St. Elias, was on a small spur of the mountain on the western side, and the camera-station "Elbow " occupied by them while there, was shown by the computations to be only 128.2 meters west of the 141 st Meridian. The Commissioners therefore decided that the point of intersection with the Alaska Coast boundary should be on the Meridian at the latitude of this station, the last course of the southeastern boundary thus being from the summit of Mount St. Elias to a point on the Meridian in latitude $60^{\circ} 18^{\prime} 22^{\prime \prime} .29$ north.

The annual joint report of the Commissioners provided for in Article IV of the Convention of 1906 and covering this season's operations, reads as follows:-

23565-7

Seventh Joint Report of the Commissioners for the Demarcation of the Meridian of 141 st Degree of West Longitude.
The undersigned Commissioners, appointed by virtue of the First Article of the Convention between the United States and Great Britain, signed at Washington on the 21st of April, 1906, have the honor to present their Seventh Annual Report upon the progress of the Demarcation of the 141st Meridian, where it forms the Boundary Line between the United States and Canada.

By reference to our Sixth Annual Report, it will be seen that at the close of the survey season of 1912, the survey of the meridian had been completed from the Arctic Ocean to Mt. Natazhat, with the exception of the inspection and numbering of the monuments from the Yukon River south.

South of Mt. Natazhat there remained the defining of the Boundary and the placing of monuments on available sites.

In 1913, inspection was carried from the Yukon River to the Natazhat Range. This included the placing of eight new monuments in stretches where the distances between existing monuments seemed excessive, the numbering of monuments, and the geodetic determination of the positions of the new monuments and of certain other monuments where the previous ties seemed weak.

A party projected the Boundary south over the Natazhat ridge into the valley across the Klutlan Glacier. They also extended topography fifteen miles south of the ridge, connecting with the topography carried from the Anderson Glacier by another party.

Still another party completed the triangulation, and trigonometrically located the Boundary across the Logan Glacier Valley, and marked it by placing three monuments. A base was measured on a bar below the foot of the Chitina Glacier, and check azimuths observed, which agreed with the computed azimuths brought over the Skolai Pass within 19".

The positions of the larger mountains of this region were determined, notably Mt. St. Elias, Mt. King, and Mt. Logan. The position of Mt. St. Elias will give a comparison between the Alaska and Yukon datums.

An attempt was made to climb Mt. St. Elias for the purpose of determining the intersection of the 141st Meridian with the line drawn parallel to the coast from the summit of the mountain. After ascending to an elevation of 16,500 feet, a furious storm forced the joint party to abandon the project.

Topographic parties secured material for plotting topography along the line from Anderson Glacier to Mt. St. Elias, the sufficiency of which for completing the mapping has yet to be determined. Otherwise the field work of the whole survey is finished.

Two hundred and two monuments mark the line from the Arctic Ocean to Mt. St. Elias, a distance of 645 miles, a vista 20 feet wide is opened out through all the timber, triangulation carried north and south from the Yukon controls all positions along the the Boundary, and a belt, averaging 4 miles in width, has been mapped for practically the entire distance.

Respectfully submitted,
O. H. TITTMANN,
U. S. Commissioner.
W. F. KING,

Washington, December 17, 1913.
H. B. M. Commissioner.

L'ENVOI.

Thus the season of 1913 saw the accomplishment of the final acts in connection with the field work of the survey of the 141st Meridian. All the gaps had been filled in, all the "loose ends picked up," and the whole work was complete from the Arctic Ocean to Mount St. Elias, and it was with feelings of genuine regret that all hands from the Chiefs of Party down, said farewell to each other and to the work which had brought them together each season for so many years, and had been productive of such pleasant relationships. There can be no doubt that the completion of the work was greatly expedited by the more than friendly relations existing at all times between the parties working under the direction of the Commissioners, and by the remarkable esprit de corps shown by all connected with the work. Everyone, American and Canadian, seemed to successfully grasp the idea that the work was of paramount
importance, and it was advanced with the greatest possible speed consistent with good quality, often at the sacrifice of reasonable and legitimate personal comforts on the part of the men, and the disposition of one party to assist another in every possible way was quite as apparent between Canadian and United States parties as between parties of the same nationality.

The peculiar international character of the survey rendered necessary crossings and re-crossings of the boundary at many points by the members of both the Canadian and United States surveys, and all customs formalities were waived by the Customs Departments of both Governments. The work of the survey was thus much facilitated, and the Commissioners take this opportunity of expressing their appreciation to these departments for the many unusual privileges extended to the survey, which avoided a great deal of delay that would otherwise have been inevitable in connection with the repeated crossings of the boundary, and the many shipments made each season from outside points, both Canadian and United States. They are indebted also to the Customs Officers at the various ports for their unfailing courtesy, and for the readiness with which they did all in their power to prevent delay and to expedite the affairs of the survey.

To the various transportation companies of the north, too, all credit is due for the expeditious manner in which they handled the difficult problem of "rushing in" the survey parties and their supplies each spring, and of bringing the parties safely out again each fall in the face of difficulties of transportation and navigation hardly realizable by anyone accustomed only to ordinary "outside" railroad and steamboat work. The White Pass and Yukon Route and the Northern Navigation Company deserve special mention in this regard, for without the hearty co-operation of the various officials of these companies it would have been impossible to bring the work to a close in the seven seasons actually required to complete it.

The greater portion of the supplies for the survey were purchased in Seattle and Vancouver and other outside points, but every possible assistance was given to the survey by the various traders and trading companies in the Yukon Territory and Alaska, notably the Northern Commercial Company at Dawson, Y.T., and at Eagle and Circle, Alaska, the North American Transportation and Trading Company at Dawson, Messrs. Horton and Moore at Fort Yukon, Alaska, and Mr. Dan Cadzow at Rampart House.

In addition to the chiefs of parties and sub-parties ${ }^{1}$ connected with the work in the field, special mention should be made of the work done in the office, adjusting and computing the field observations. A large proportion of this work was done by the respective field officers during the winter śeasons, but to Mr. W. F. Reynolds a great deal of credit is due for the manner in which he executed, under the direction of the Computing Division of the Coast and Geodetic Survey, the work assigned to him, and kept it up to date throughout. The work of Mr. Raymond L. Ross of the United States section of the Commission, in connection with the draughting, and the proofing of the maps after engraving, also deserves special commendation.

The eighth report of the Commissioners follows:-
Eighth Joint Report of the Commissioners for the Demarcation of the Meridian of the 141st Degree of West Longitude.
The undersigned Commissioners, appointed by virtue of the first Article of the Convention between the United States and Great Britain signed at Washington on the 21st of April, 1906, have the honor

[^12]23565-7 $\frac{1}{2}$
to present their Eighth Annual Report upon the progress of the demarcation of the 141st Meridian, where it forms the Boundary Line between the United States and Canada.

By reference to our Seventh Annual Report it will be seen that at the close of the survey season of 1913 , the field work of the whole survey from the Arctic Ocean to Mt. St. Elias had been completed, with the possible exception of the section between the head of Anderson Glacier and Mt. St. Elias as to which there was some doubt at the date of the said report whether sufficient data had been secured to complete the plotting of the topography.

This doubt has since been removed, as the data secured during the season of 1913 proved to be sufficient. We have therefore to report that the field work of the whole survey and demarcation has been finished.

In this connection, however, we have to report that a strict compliance with the requirement of Article II of the Treaty, that intervisible monuments shall be established along the whole extent of the line, has been found to be impossible, for in latitude $61^{\circ} 31^{\prime}$ the meridian crosses a high ridge extending eastward from Natazhat Mountain. On account of perpetual snow no monument can be placed on this ridge, which therefore intercepts intervisibility.

During the year 1914 the staffs of the Commissioners have been engaged in the computations of the geographic positions of the monuments and in the preparation of the maps showing the boundary and the country adjacent thereto.

These maps are made in sheets each covering 15 minutes in latitude, on a scale of 1:62,500. In all there will be 38 of these sheets, of which numbers 1 to 32 , inclusive (counted southward from the Arctic Ocean), have been completed and signed by the Commissioners.

A general report of the operations of the whole survey is in preparation.
Respectfully submitted,
W. F. KING,
H. B. M. Commissioner.
O. H. TITTMANN,

Washington, January 27, 1915.

> STATISTICAL TABLE SHOWING DETAILS OF THE WORK DONE EACH YEAR BY THE VARIOUS DIVISIONS OF THE SURVEY.

${ }^{1}$ Azimuths, other than the primary azimuth of 1907 , were observed as checks merely, in accordance with the Commissioners' decision,
Washington, December 12th, 1912, et seq.-Dominion Observatory file 771-15.

SUMMARY SHOWING CHIEFS OF PARTY, AND CHIEFS OF SUB-PARTIES ENGAGED EACH YEAR ON THE VARIOUS DIVISIONS OF THE WORK, AND THE APPROXIMATE STRENGTH OF THE PARTIES

-	-	1907.	1908.	1909.	1910.	1911.	1912.	1913.
Chief of Party...	United States.	G. C. Baldwin Thos. Riggs, jr.	G. C. Baldwin Thos. Riggs, jr.	G. C. Baldwin Thos. Riggs, jr.	Thos. Riggs, jr.	Thos. Riggs, jr.	Thos. Riggs, jr.	Thos. Riggs, jr.
	Canadian.....	A. J. Brabazon, D.L.S.	A. J. Brabazon, D.L.S.	Fred. Lambart, D.L.S. J. D. Craig, D.L.S	J. D. Craig, D.L.S.			
Projection.	United States.	G. C. Baldwin	G. C. Baldwin	G. C. Baldwin Thos. Riggs, jr.	A. C. Baldwin	W. B. Gilmore	Thos. Riggs, jr.	
	Canadian.....	A. J. Brabazon, D.L.S.	$\begin{aligned} & \text { A. J. Brabazon, } \\ & \text { D.L.S. } \end{aligned}$	Fred. Lambart, D.L.S J. D. Craig, D.L.S	J. D. Craig, D.L.S.	D. H. Nelles, D.L.S.	J. D. Craig, D.L.S.	
Reconnaissance	United States.	W. B. Reaburn	W. B. Reaburn	W. B. Reaburn A. C. Baldwin	W. B. Reaburn	W. B. Reaburn	W. B. Reaburn Thos. Riggs, jr.	W. B. Reaburn
	Canadian.....	Fred. Lambart, D.L.S.	Fred. Lambart, D.L.S.	$\begin{aligned} & \text { Fred. Lambart, } \\ & \text { D.L.S. } \\ & \text { J. D. Craig, D.L.S. } \end{aligned}$			D. H. Nelles, D.L.S.	Fred. Lambart, D.L.S. T. C. Dennis, D.L.S. H. S. Mussel
Triangulation...	United States.	Thos. Riggs, jr. W. B. Reaburn	Thos. Riggs, jr. W. B. Gilmore	Thos. Riggs, jr. D. W. Eaton G. C. Baldwin A. C. Baldwin	Thos. Riggs, jr. A. I. Oliver W. B. Reaburn W. B. Gilmore	A. C. Baldwin D. W. Eaton	Thos. Riggs, jr. W. B. Gilmore A. C. Baldwin D. W. Eaton	A. C. Baldwin D. W. Eaton Thos. Riggs, jr.
	Canadian.....	Fred. Lambart, D.L.S.	Fred. Lambart, D.L.S.	Fred. Lambart, D.L.S.	Fred. Lambart, D.L.S. A. G. Stewart, J. D. Craig, D.L.S	Fred. Lambart, D.L.S. A. G. Stewart, D.L.S.	Fred. Lambart D.L.S. D. H. Nelles, D.L.S J. D. Craig, D.L.S	Fred. Lambart, D.L.S. T.C.Dennis, D.L.S. D. J. Fraser, D.L.S H. S. Mussel J. D. Craig, D.L.S
Topography Plane table Photographic	United States.	A. I. Oliver	A. I. Oliver	A. I. Oliver W. C. Guerin	A. I. Oliver W. C. Guerin F. S. Ryus	W. C. Guerin F. S. Ryus	W. C. Guerin F. S. Ryus C. V. Guerin	C. V. Guerin
	United States.						D. W. Eaton	D. W. Eaton A. C. Baldwin
	Canadian.....	Fred. Lambart, D.L.S.	Fred. Lambart, D.L.S.	Fred. Lambart, D.L.S. J. D. Craig, D.L.S			Fred. Lambart, D.L.S. J. D. Craig, D.L.S	Fred. Lambart, D.L.S. T. C. Dennis, D.L.S E. W. Nesham, D.L.S. H. S. Mussell

SUMMARY SHOWING CHIEFS OF PARTY, AND CHIEFS OF SUB-PARTIES ENGAGED EACH YEAR ON THE VARIOUS DIVISIONS OF THE WORK, AND THE APPROXIMATE STRENGTH OF THE PARTIES-Concluded

[^13]United States observer-Edwin Smith, Assistant, Coast and Geodetic Survey,
Canadian observers-Dr. Otto J. Klotz and F. A. McDiarmid, of the Dominion Observatory, Ottawa

LIST OF MONUMENTS MARKING THE INTERNATIONAL BOUNDARY LINE ALONG THE 141ST
MERIDIAN FROM THE ARCTIC OCEAN TO MOUNT ST. ELIAS.
N.B.-All monuments are of aluminum-bronze and are of the standard small type unless otherwise noted.

Number of Monument.	Distance between Monuments	Latitude.	Elevation at base	Nearest visible Monuments. Nos.	Description.
	feet.	- '	feet.	Nos.	
1	20605	$693845 \cdot 275$	$21 \cdot 3$	2, 3	Large monument 200 feet south of the edge of the tundra at the shore of the Arctic Ocean.
2		$3522 \cdot 608$	$58 \cdot 6$		On the open tundra about 4 miles from the coast and 300 feet west of the open
3		$3150 \cdot 486$	$265 \cdot 8$	2,4	On the open tundra at the beginning of the foothills.
4		$28 \quad 30 \cdot 129$	1261 -3	3 , 5	On a bare shaly ridge, the first crossed by the Line south of the coast.
5		$2505 \cdot 280$	$2521 \cdot 5$	4 , 6	In the saddle of a ridge just north of a branch of Clarence River.
6		$2301 \cdot 6191$	$2692 \cdot 0$	5, 7	On a spur-ridge east of Clarence River.
7	10984	2113.55	$2434 \cdot 3$	6, 8	On a dry flat table land 1 mile south of Clarence River crossing.
8		$1755 \cdot 024$	$5146 \cdot 0$	7, 9	On the summit of a ridge between Clarence and Malcolm Rivers.
9	16	$1512 \cdot 862$	$4300 \cdot 3$	8, 10	On the eastern end of a spur-ridge between branches of Clarence and Malcolm
10	17500	$12 \quad 20 \cdot 73$	$3014 \cdot 6$	9, 11	Rivers. On the side-hill 800 feet east of Malcolm River and about 4 miles north of the
11	11908	$1023 \cdot 601$	5173.2		Summit of the British Mountains.
11	8575	$1023 \cdot 601$	$5173 \cdot 2$	10, 12	sharp rocky ridge about $1 \frac{1}{2}$ miles north of the summit of the British Mountains.
12		0859.245	$5332 \cdot 6$	11, 14	On a rocky spur $\frac{1}{2}$ mile northwest of a low pass in the British Mountains.
13		$07 \quad 34 \cdot 726$	$3752 \cdot 4$	14,	100 yards south of and below a prominent rock bluff on a southeasterly spur of the
14	20958	$04 \quad 08.576$	$3899 \cdot 2$	13, 15	On the summit of a bare ridge between the forks of Aspen
15	14449	$0146 \cdot 447$	3597.9	14, 16	On the summit of the first ridge south of Aspen Creek.
16	9221	$0015 \cdot 750$	$3357 \cdot 6$	15, 17	On the summit of a jagged shaly ridge between the forks of a creek which join one
	20011				mile east of the line.
17	17137	685658.920	3974-1	16,18	On the summit of a ridge about $1 \frac{3}{4}$ miles north of Joe Creek, and 200 yards east of the highest point.
18		$5410 \cdot 353$	$3572 \cdot 5$	17, 19	On the rocky side-hill of a ridge about $1 \frac{1}{2}$ miles south of Joe Creek.
19		$5041 \cdot 740$	$3794 \cdot 9$	17,18	On the divide between Joe and Boulevard Creeks, $\frac{1}{4}$ mile east of the trail in a low
	12507		$4331 \cdot 8$		flat saddle.
20	22565	$48 \quad 38 \cdot 715$	$4331 \cdot 8$		On the east slope and about 100 feet below the summit of a sharp peak $1 \frac{1}{2}$ miles south of Boulevard Creek crossing.
21	10372	$4456 \cdot 750$	$3449 \cdot 8$	20, 22	On the summit of a sharp ridge almost parallel to the Line and about 6 miles north of Mancha Creek crossing.
22	16159	$4314 \cdot 725$	$3153 \cdot 6$	21, 25	On the westerly spur of a sharp ridge parallel to the Line and about 4 miles north of Mancha Creek crossing.
23		$40 \quad 35 \cdot 777$	$2499 \cdot 3$	22, 24	On a shoulder of the end of the ridge 1 mile north of Mancha Creek crossing.
24	15	3759.798	$1675 \cdot 8$	23, 25	On the flat 250 feet south of the most southerly branch of Firth River.
25	16854	$3514 \cdot 006$	$2269 \cdot 8$	23, 24	On a bare flat ridge 3 miles south of Firth River.
26	11436 19789	33 21.511	2682-8	23, 27	One-quarter mile west of the summit of a bare rounded hill about 6 miles south of Firth River.
27		$3006 \cdot 848$	2397-1	26, 28	On a flat open ridge about 8 miles north of Ammerman Mountain.
28	23947	$2611 \cdot 283$	$1831 \cdot 7$	27, 29	About 3 miles north of Ammerman Mountain on a low open ridge running east and
29	17340	23 20.709	2924.8	28,30	west. On the side of a spur 300 feet above and $\frac{1}{4}$ mile east of the trail through a low pass
	13911				in Ammerman Mountain.
30	14752	2103.870	$1938 \cdot 5$	29, 31	At the edge of the timber $2 \frac{1}{2}$ miles south of the low pass in Ammerman Mountain.
31	33763	1838.748	$1204 \cdot 8$	30, 32	At the north edge of the Old Crow Flats and $5 \frac{1}{2}$ miles south of the low pass in Ammerman Mountain.
32		$1306 \cdot 612$	$1023 \cdot 5$	31, 33	Large monument, 50 feet north of the edge of the north bank of Old Crow River.
33	460	1302.084	1020.5	32, 34	On the south bank of Old Crow River, 300 feet from the water's edge.
34	11410	1109.838	1032-9	33, 35	785 feet north of the edge of the north bank of Bilwaddy Creek.
35	14576	$0846 \cdot 447$	1088-1	34, 36	On slightly rising ground $2 \frac{3}{4}$ miles south of Bilwaddy Creek.
36	60	$05 \quad 39.931$	$1255 \cdot 6$	35, 37	On a low spruce-covered ridge connecting Potato Hill with the hills to the west.
37	17300	0249.744	1469.4	$36, \quad 38$	On the northeasterly slope of a low brush-covered point about 3 miles north of
37	2382	$0249 \cdot 744$	$1469 \cdot 4$		Fish Creek Crossing.
38		$0226 \cdot 314$	1479.9	37, 39	On the summit of the same slope as No. 37 and $\frac{1}{2}$ mile south of it.

LIST OF MONUMENTS, ETC.-Continued.

Number of Monument.	Distance between Monuments	Latitude.	Elevation at base	Nearest visible Monuments.	Description.
	feet.	- , "	feet.	Nos.	
39	19895	$675728 \cdot 826$	1181.4	38,40	In the scattered timber on the westerly slope of the valley of Schaefer Creek and about 3 miles south of Fish Creek crossing.
40	15939	$675413 \cdot 108$	$1303 \cdot 2$	39, 41	In a saddle near the end of a low ridge extending from the west into the valley of Schaefer Creek
41	12988	$5136 \cdot 307$	$1187 \cdot 7$	40, 42	On the north bank of Schaefer Creek, where it crosses the Line three times in less than 100 feet.
42		49 28-530	$1734 \cdot 0$	41, 43	On the summit of a bare steep ridge, the first south of the Old Crow Flats.
43		$47 \quad 16.408$	$1462 \cdot 3$	42, 44	On the east slope of the ridge lying between the upper forks of Surprise Creek.
44		$43 \quad 50.912$	$3326 \cdot 0$	43, 45	On the summit of the divide between Porcupine and Old Crow Rivers.
45	20938	$4254 \cdot 12$	3157.5	44, 46A	One mile south of the divide between Rapid River and Old Crow drainage on a low flat rocky point.
46		39 28.13	$2160 \cdot 3$	46A, 47	On the summit of a rock and gravel ridge 1 mile north of Rapid River.
46A		3553.073	$2232 \cdot 9$	46, 47	On a low, bare, rock-covered ridge 3 miles south of Rapid River.
47		$3402 \cdot 207$	$2572 \cdot 6$	46A, 47A	On the summit of the ridge forming the divide between Rapid River and the head-
,	19118				waters of Sunaghun Creek, just north of an opening in a conspicuous rock outcrop.
47A		$3054 \cdot 12$	$1652 \cdot 9$	47, 48	Low down on the west slope of Sunaghun Creek valley, and 650 yards north of the
48	7713	$2938 \cdot 24$	2029 • 7	47A, 48A	southerly crossing of the Line and the Creek. On the westerly shoulder of a rocky dome east of Sunaghun Creek and $5 \frac{1}{3}$ miles
48	12227	$37 \cdot 94$	19		north of Porcupine River.
	2822				
49	9551	27 10.18	$1920 \cdot 6$	48, 52	On the southwesterly slope of a hill 3 miles north of Porcupine River.
49A	3552	$2536 \cdot 21$	$1286 \cdot 8$	51. 52	About $\frac{3}{4}$ mile north of Porcupine River and a short distance back from the edge of the plateau.
50	5392	$2501 \cdot 261$	$778 \cdot 6$	51,	Large monument on the flat 670 feet north of Porcupine River, and 150 feet from the foot of the hill.
51		$2408 \cdot 211$	$800 \cdot 6$	$49 \mathrm{~A}, 50$	On the sloping flat 250 yards south of the south bank of Porcupine River.
52		2208.82	$2019 \cdot 3$	$49 \mathrm{~A}, 53$	On the easterly slope of Canalaska Mountain, $2 \frac{1}{2}$ miles south of Porcupine River.
53	10849	$2022 \cdot 089$	$2149 \cdot 1$	52, 54	About $4 \frac{1}{2}$ miles south of Porcupine River, and 250 yards west of the summit of a
54	12280	1821.270	$1855 \cdot 2$		dome at the head of the valley east of Canalaska Mountain.
54	12738	1821.270	$1855 \cdot 2$		About miles south of Porcupine River on a westerly spur of a north and south ridge.
55		$1615 \cdot 946$	$1849 \cdot 2$	54, 56	2 miles south of Monument No. 54 on a westerly spur of the same ridge.
56		$13 \quad 17 \cdot 990$	$1312 \cdot 8$	55, 57	In a low flat valley in which a tributary of Bluefish River heads, and 100 yards
57	19880	$1002 \cdot 396$	1861.4	55, 56	north of the north branch.
58	13950	$0745 \cdot 149$	$2488 \cdot 9$	59, 61	Bluefish River. Near the southern edge of a flat ridge between Salmontrout and Bluefish drainage
	20507	$0423 \cdot 38$		56,60	
59	16365	$04 \quad 23 \cdot 38$	$2057 \cdot 9$	56, 60	On the easterly slope of a flat ridge about 3 miles northeast of the big bend in Salmontrout River.
60	21653	$0142 \cdot 370$	$1362 \cdot 7$	59, 61	2 miles east of the big bend in Salmontrout River, on ground sloping gently to the north.
61	10645	$665809 \cdot 327$	$2573 \cdot 8$	60, 62	3 miles southeast of the big bend in Salmontrout River, on the westerly slope of a high ridge.
62	19461	$5624 \cdot 593$	3019 - 1	61, 63	Just west of a saddle in a northwesterly spur of the ridge bet ween Black and Salmontrout drainages.
63	22452	$5313 \cdot 115$	$3472 \cdot 0$	62, 64	Near the northern edge of the flat-top ridge forming the divide between Black and Salmontrout Rivers.
64		$4932 \cdot 209$	$3794 \cdot 5$	63, 65	On the highest point on line between Black and Porcupine Rivers.
65	13985	$4714 \cdot 612$	$3312 \cdot 7$	65, 68	On the summit of a ridge crossed by the Line 2 miles north of Fort Creek.
66	25591	$4302 \cdot 815$	2177-1	65, 67	On a low divide $2 \frac{3}{4}$ miles south of Fort Creek.
67	23921	39 07-456	$2481 \cdot 7$	66, 68	$7 \frac{1}{2}$ miles north of Black River on a northerly spur of a prominent ridge.
68	7872	3749.997	$2724 \cdot 5$	67, 69	6 miles north of Black River on the summit of a prominent east and west ridge.
69	19080	$34 \cdot 42 \cdot 26$	$2189 \cdot 9$	68, 70	$2 \frac{1}{2}$ miles north of Black River, near the top of the southwesterly slope of a ridge.
70	10874 19545	$3255 \cdot 265$	$1735 \cdot 4$	69, 71	Large monument $\frac{1}{3}$ mile north of, and 700 feet above Black River on a flat shoulder.
71		$2942 \cdot 95$	$1274 \cdot 7$	70, 72	In the Black River flats about $3 \frac{1}{4}$ miles south of the river.
72	20747 8654	$2618 \cdot 808$	$2288 \cdot 9$	70, 71	$2 \frac{1}{2}$ miles north of Bern Creek, on the slope of a westerly spur of a ridge running north from the creek.
73		$2453 \cdot 652$	2933.9	70, 74	On the summit of the ridge immediately north of Bern Creek.
74	$\begin{aligned} & 15273 \\ & 22987 \end{aligned}$	22 23.373	2663 - 1	73, 75	2 miles south of Bern Creek on a small westerly spur of the ridge between Bern and Racquet Creeks.

LIST OF MONUMENTS, ETC.-Continued.

$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Monu- } \end{aligned}$ ment.	Distance between Monuments	Latitude.	Elevation of base	$\begin{gathered} \text { Nea } \\ \text { ver } \\ \text { vont } \end{gathered}$	rest ble ments	Description.
75	feet.	- '"	feet			
	57	$18 \quad 37 \cdot 19$	$2740 \cdot 3$	74.	76	3 miles north of Runt Creek on the summit of a flat-top ridge.
76		14 59-177	2853.5		77	$1 \frac{1}{2}$ miles south of Runt Creek in the westerly slope of a north and south ridge.
77	6210	$66 \quad 13 \quad 58.070$	$3011 \cdot 6$		78	2 miles north of Teecan Creek in the lowest point of a saddle on a westerly spur of
78	19776	$1043 \cdot 474$	2804-3		79	a north and south ridge. About midway between Teecan and Orange Creeks on a small plateau on the ridge.
79	4826	0955.982	$2826 \cdot 7$		80	About 1 mile north of Orange Creek, on the summit of a high rock.
80	14292	07 35-350	2859.4		81	$1 \frac{1}{2}$ miles south of Orange Creek, on the easterly slope of a dome-shaped peak.
81	17782	$0440 \cdot 374$	3536.6		82	5 miles south of Orange Creek, on the summit of a prominent bare ridge.
82	17585	0312.83	$3286 \cdot 0$		83	7 miles south of Orange Creek, where the line again crosses the ridge on which
83		00 19.79	2929.3	82,	84	Monument No. 81 is set.
84	17550	$65 \quad 57 \quad 27 \cdot 09$	2063.	83,	85	rocky peak. About $\frac{1}{2}$ mile south of Siwash Creek, on the summit of a long timbered ridge.
85	12794	55 21.196	$2597 \cdot 1$	84,	86	3 miles south of Siwash Creek, on the bare summit of a prominent timbered ridge.
86	16727	$5236 \cdot 597$	$2740 \cdot 5$		88	$2 \frac{1}{2}$ miles north of Kandik River just above timber-line on the easterly slope of a
	16882					saddle in the ridge. About 900 yards south of Kandik River, near the edge of the high bank overlooking
87	20845	$4950 \cdot 48$	1969.9			About 900 yards south of Kandik River, near the edge of the high bank overlooking
88		$4625 \cdot 357$	2374.8	86,	89	$4 \frac{1}{2}$ miles south of Kandik River, on the summit of a flat ridge.
89	14430	$4403 \cdot 36$	$2311 \cdot 0$	88.	91	$2 \frac{3}{4}$ miles north of the northerly branch of Big Sitdown Creek on the westerly side
90	16351	4122.456	$2167 \cdot 5$			On the westerly slope of the end of the ridge between the branches of Big Sitdown
91	21975	$3746 \cdot 212$	3191.0	89,	92	Creek.
92	15857					a
93		3224.937	3589.4	92,		2 miles north of Nation River, on the easterly shoulder of a flat-top peak.
94	17112	2936.544	3123.6	96.		About $\frac{3}{4}$ mile north of Jungle Creek, on the westerly slope of a sharp rocky peak.
95	17063	2648.63	1669.5			On the north bank of Ettrain Creek.
96	16568	$2405 \cdot 59$	$3625 \cdot 5$	94.		3 miles south of Ettrain Creek, on the westerly slope of a shaly ridge.
97	16377	2124.430	$4745 \cdot 1$	98.	99	$2 \frac{1}{2}$ miles north of Tindir Creek in a saddle on the ridge.
98	7517	$2010 \cdot 45$	4224			About 1 mile north of, and 2000 feet above Tindir Creek, on the summit of the ridge.
	24049	1613.778				
99	24400	1613.778	4778			4 miles south of Tindir Creek on the crest of a sharp southeasterly spur of a prominent dome-shaped mountain.
100	16159	1213.65	2202.8			Beside an old trail on the south bank of Cathedral Creek, and 100 feet from the edge of the bank.
101	26336	$0934 \cdot 63$	$4180 \cdot 6$.	..	3 miles south of Cathedral Creek in a saddle on a high ridge.
102		$0515 \cdot 45$	2092.0	On a low bench about 500 feet north of Hard Luck Creek.
103	20732	$0151 \cdot 42$	$3430 \cdot 3$	105		$2 \frac{1}{2}$ miles north of Tatonduk River, on the western side of a saddle near the end of
	14458	6459 29.14	1095.			the ridge. On a low bench 400 feet south of Tatonduk River.
104	27399	54 59-496	4215 . 4	103,	106	200 feet west of the summit of a high dome on the divide between Shade Creek
105	17998	$5202 \cdot 37$	2732.	105,		and Tatonduk River. On the divide between Shade and Last Chance Creeks.
106	10942	$52.02 \cdot 37$	2732.			
107	13975	$5014 \cdot 68$	$1704 \cdot 6$..	On a low spur just north of Last Chance Creek.
108		47 57.14	$2304 \cdot 6$	105,	109	On the east slope of a saddle in the divide between Last Chance and Eagle Creeks.
109	14619	4533.266	2573.4	108,	110	$1 \frac{1}{2}$ miles south of Eagle Creek, on the summit of the ridge
110	18064	$4235 \cdot 49$	1697.9	109,	113	$1 \frac{3}{4}$ miles north of Yukon River crossing, on the westerly slope of the ridg
111	9028	$4106 \cdot 64$	1036.0	112		Large monument on the north bank of Yukon River, about 150 feet above the river.
112	1537	$4051 \cdot 513$	$879 \cdot 3$	111		Large monument on the south bank of Yukon River, 20 feet from the edge of the
113	8408	3928.77	$2477 \cdot 3$	110,		$1 \frac{1}{4}$ miles south of Yukon River, on the rather flat summit of the ridge.
114		37 51.607	2988.9			$3 \frac{1}{2}$ miles south of Yukon River, and 25 feet from the southern edge of the ridge.

LIST OF MONUMENTS, ETC.-Continued.

Number of Monument.	Distance between Monuin feet.	Latitude.	Elevaat base in feet.	$\begin{aligned} & \text { Nearest } \\ & \text { visible } \\ & \text { Monuments. } \\ & \text { Nos. } \end{aligned}$	Description.
	16448	- , "			
114A		3621.545	2907 - 1	114, 115	$5 \frac{1}{2}$ miles south of Yukon River, on the summit of a broad flat ridge.
115	6697	$3339 \cdot 660$	$3395 \cdot 1$	114A, 115A	On the summit of a ridge about midway between Fortymile Dome and Yukon
115A		3233.75	$2830 \cdot 6$	115, 116	$2 \frac{1}{2}$ miles north of Liberty Fork, on the easterly slope of a ridge.
116	18427	$64 \quad 2932.388$	2801 -1	115A, 117	$1 \frac{1}{4}$ miles south of Liberty Fork, on the easterly slope of a north and south ridge.
117	7735	2816.266	$2946 \cdot 5$	115A, 116	$2 \frac{1}{2}$ miles south of Liberty Fork, on the summit of a rather flat ridg
118	17813	$25 \quad 20 \cdot 954$	3271 -7	117, 118A	On the westerly slope of a long saddle in the ridge southeast of Fortymile Dome.
118A	18282	22 21.020	2603.9	118, 119	4 miles north of Fortymile River, on an easterly spur of a ridge paralleling South
119	6745	2114.635	2542 .	118A, 120	Boundary Creek. $2 \frac{3}{4}$ miles north of Fortymile River on an easterly spur of a ridge paralleling South
	5251				Boundary Creek.
120	907	$2022 \cdot 955$	$2315 \cdot 8$	119, 121	$1 \frac{3}{4}$ miles north of Fortymile River on an easterly spur of a ridge paralleling South Boundary Creek.
121	3466	1853.69	$1240 \cdot 3$	120, 122	Large monument immediately north of Fortymile River near the southeast end of
122		1819.576	$1701 \cdot 0$	120, 121	a rocky ridge between South Boundary and Sam Patch Creeks. About $\frac{1}{2}$ mile south of Fortymile River, on a northwesterly shoulder of the ridge.
123	11212	16 29.228	1814.4	120, 123A	Near the northern edge of the rather flat ridge between Moose and Alma Creeks.
123A	12482	$1426 \cdot 373$	2348.7	123, 124	5 miles south of Fortymile River on the westerly slope of the valley near the head
124	12503	$1223 \cdot 316$	$2749 \cdot 0$	123A, 125	of Alma Creek. On the westerly slope of Baldy Mountain, about $1 \frac{1}{4}$ miles from the s
	21567				
125	11815	08 51.042	$3131 \cdot 6$	124, 125A	On the westerly slope of a small eminence about 4 miles south and west of Baldy Mountain.
125A		0654.75	3064.5	125, 126	On the westerly slope of a ridge lying between two forks of Hall Creek.
126	10613	0510.290	$4238 \cdot 0$	125A, 126A	In a saddle in a high rocky ridge immediately north of Davis Creek.
126A	1923	0418.563	$4072 \cdot 6$	126, 127	Near the northern edge of the flat top of the ridge immediately south of Davis
127		$0109 \cdot 217$	$4227 \cdot 3$	126A, 128	In a deep saddle in the second ridge south of Poker Creek.
128	17351	$63 \quad 5818.438$	3824.3	127, 129	On the easterly slope of a rise in the ridge between the headwaters of Bedrock and
129	14769	55 53.067	$3821 \cdot 5$	128, 132	Pat Murphy Creeks. $1 \frac{1}{2}$ miles north of Sixtymile River on the east
	8506				
130		$5429 \cdot 35$	$2622 \cdot 3$	131	Large monument on the north bank of Sixtymile River, 100 feet above the river.
131	10193	54 24.77	$2556 \cdot 3$	130	In the flat on the south side of Sixtymile River, 96 feet from the edge of the bank
132		$5244 \cdot 436$	$3456 \cdot 7$	129, 133	2 miles south of Sixtymile River on the summit of the second ridge south of the
133	21849	49 09.376	5031.9	132, 135	river. 6 miles south of Sixtymile River at the western edge of the large, flat, rocky top of
134	15363	$38 \cdot 150$	2576.9		the ridge. 30 feet north of the north bank of North Fork of Ladue Riv
5	9677	46			
135		4502.895	$3892 \cdot 0$	133, 136	2 miles south of North Fork of Ladue River on the northeasterly slope of the ridge.
136	19720	$4148 \cdot 790$	$3351 \cdot 2$	135, 138	- $5 \frac{1}{2}$ miles south of the most northerly crossing of North Fork of Ladue River
137	14896	39 22.169	$2581 \cdot 7$	136, 138	3 miles north of the junction of McElfish Creek and North Fork of Ladue River.
138	15210	$3652 \cdot 453$	$1845 \cdot 4$	137, 140	30 feet south of the south bank of McElfish Creek, $\frac{1}{2}$ mile above its junction with
139	14138	$3433 \cdot 284$	1822.0		North Fork of Ladue River. 20 feet north of the north bank of a small creek about 3 miles south of the mouth of
	7287				McElfish Creek.
140	13867	$3321 \cdot 558$	2580.1	138, 141	On the first ridge crossed by the line south of Ladue valley.
141		$3105 \cdot 055$	2963.0	137, 140	On the summit of the ridge 1 mile north of Deep Creek
142	18125	$2806 \cdot 645$	3253.2	136, 143	On a broad, thinly timbered ridge, $2 \frac{1}{2}$ miles south of Deep Creek
143	17239	2516.946	3223.4	142, 144	10 miles north of Ladue River, on the summit of a high and rather narrow ridge.
144	15462	22 44.747	2728.9	143, 145	$7 \frac{1}{2}$ miles north of Ladue River, on an easterly shoulder of the main
145	12860	$2038 \cdot 155$	$1670 \cdot 8$	144	5 miles north of Ladue River, and 80 feet north of the north bank of a small creek.
146	17952	$1741 \cdot 441$	$3110 \cdot 5$	144, 147	On the summit of the first ridge north of Ladue River
147	9871	16 04-279	1479 . 4	146	Large monument 140 feet south of the south bank of Ladue River.
148	$\begin{aligned} & 15761 \\ & 16391 \end{aligned}$	13 29.122	$2993 \cdot 1$	146, 149	On the summit of the ridge 3 miles south of Ladue River.

LIST OF MONUMENTS, ETC.-Continued.

Number of ment.	Distance between ments	Latitude.	Elevation at base	$\begin{gathered} \text { Nearest } \\ \text { visible } \\ \text { Monuments. } \end{gathered}$	Description.
	feet.	- , "	feet.	Nos.	
149	7337	1047.773	3878.5	148, 150	6 miles south of Ladue River on a small rockslide on the westerly side of a flat dome at the northern end of Moosehorn Mountains.
150	12338	0935.552	3891.6	149, 151	$7 \frac{1}{2}$ miles south of Ladue River, on the westerly slope of a flat dome.
151		07 34-099	3471.9	150, 152	10 miles south of Ladue River, on the summit of a westerly spur of Moosehorn
152	17695	0439.911	$3099 \cdot 7$	151, 153	On Mountains.
153	20430	0118.805	$2755 \cdot 0$	153, 154	On the easterly slope of Mosquito Knob, 2 miles north of the headwaters of Scottie
	18903	625812.726	2283.4	153, 155	Creek. 31 $\frac{1}{2}$ miles north of the most northerly crossing of Scottie Creek, on the westerly
	16650		2147 -8	154,	slope of a slight rise.
155	15399	5528.819 52 57.228	2147.8	154, 156	On the summit of a slight rise near the end of the ridge between Yellowwater and Scottie Creeks.
156	14933	5257.228	$1913 \cdot 3$	155, 157	100 feet north of the north bank of Scottie Creek, at its second crossing of the line.
157	9110	50 30.223	$2656 \cdot 7$	155, 158	$2 \frac{3}{4}$ miles south of the second crossing of Scottie Creek, on the westerly slope of the ridge.
158		4900.537	$3505 \cdot 7$	157, 159	$4 \frac{1}{2}$ miles south of the second crossing of Scottie Creek, on the summit of the ridge.
159	22269	$4521 \cdot 304$	3236.5	158. 160	8 miles north of the third crossing of Scottie Creek, on the summit of a ridge.
160	9438	$4348 \cdot 394$	3221.1	159, 161	$6 \frac{1}{2}$ miles north of the third crossing of Scottie Creek, on a westerly spur of the ridge.
161	19866	$4032 \cdot 821$	$2323 \cdot 8$	160, 162	$2 \frac{1}{2}$ miles north of the third crossing of Scottie Creek, on the summit of a low ridge.
162	13767	3817.290	1831.7	161, 163	40 feet south of the south bank of Scottie Creek, at its third crossing of the lin
163	19027	3507.970	$2182 \cdot 3$	162, 164	$3 \frac{1}{2}$ miles south of the third crossing of Scottie Creek, in a saddle on the ridge.
164	7024	3400.819	$2679 \cdot 3$	163, 165	3 miles north of Mirror Creek, on the summit of a long timbered ridg
165	15832	3124.952	$1973 \cdot 7$	164, 166	feet north of the north bank of the north branch of Mirror Cree
	18915	2818.739	2681.4	165. 167	just west of the Line. nile north of Snag River, on the summit of
166	6601				ile north of Snag River, on the s
167	19418	2713.749	2084-2	166, 168	50 feet south of the south bank of Snag River
168	34251	$2402 \cdot 578$	$2159 \cdot 5$	167, 169	$3 \frac{1}{2}$ miles south of Snag River, and abreast of the "Little Hills."
169	30530	$1825 \cdot 369$	$2340 \cdot 2$	168, 170	In the Snag Flats, 6 miles south of the "Little Hills."
170		13 24.792	2584.6	169, 171	340 feet south of the east bank of Beaver Creek, at its third crossing of the lin
171	20787	10 00.136	$3446 \cdot 1$	170, 172	On the summit of the steep rock slope, $1 \frac{1}{2}$ mile north of the second crossing of
172	14154	0740.779	4234.	171, 173	Beaver Creek. 2 miles south of the second crossing of Beaver Creek, on the easterly shoulder
	7750				the ridge.
173	13414	$0624 \cdot 48$	3168.0	172, 174	750 feet south of Baultoff Creek, and 100 feet above
174	5630	0412.401	5566.3	173, , 175	3 miles south of Baultoff Creek, on the summit of a sharp ridge.
175		0316.971	5561.8	174, 176	On the summit of the sharp ridge immediately south of Eureka Gulch.
176	9692	0141.545	5454.4	175, 176A	$4 \frac{1}{2}$ miles north of the first crossing of Beaver Creek, at the northern edge of the
176A	19215	$615832 \cdot 361$	$3867 \cdot 0$	177, 178	plateau. One-half mile north of the first crossing of Beaver Creek, on the easterly slope of
177		57 54-199	3450.5	176A, 178	(the ridge. ${ }_{\text {tres }}^{\text {One-quarter mile south of, and overlooking the first crossing of Beaver Creel }}$
178	8781	$5627 \cdot 741$	5515.2	177, 180	$1 \frac{1}{2}$ miles south of the first crossing of Beaver Creek, at the top of the steep northern
179	18742	$5323 \cdot 209$	$4205 \cdot 1$	180	face of the ridge. $5 \frac{1}{2}$ miles south of the first crossing of Beaver Creek, on the westerly slope of the
180	17521	50 30•700	$6791 \cdot 0$	179, 181	ridge. 7 miles north of White River, on the summit of a high rocky pea
181	11188	$4840 \cdot 542$	6447.3	180, 182	5 miles north of White River, on the summit of the first ridge north of the riven
182	24046	$4443 \cdot 781$	3125	181, 183	rge monument 80 feet north
	5272				side of White River valley.
183	4452	43 51.867	$3089 \cdot 6$	182, 184	Large monument $\frac{3}{3}$ mile south of White River, 20 feet south of the edge of the bank south of the flats.
184	20589	4308.025	$3475 \cdot 5$	183, 185	$1 \frac{1}{\frac{1}{2}}$ miles south of White River, on the westerly slope of the ridge.
185		$3945 \cdot 307$	$3548 \cdot 6$	184, 186	10 feet south of the south bank of Kletsan Creek
186		$3905 \cdot 882$	3799.7	185, 187	Three-quarters of a mile south of the crossing of Kletsan Creek.
	11434				

LIST OF MONUMENTS, ETC.-Concluded.

Number of Monument.	Distance between Monuments	Latitude.	Elevation at base	Nearest visible Monuments.	Description.
	feet.	- ' 1	feet.	Nos.	
187	8596	$3713 \cdot 302$	$4363 \cdot 5$	186, 187A	3 miles south of the crossing of Kletsan Creek, on a low ridge covered with volcanic ash.
187A	260975	$3548 \cdot 659$	$5733 \cdot 1$	186, 187	5 miles south of the crossing of Kletsan Creek, on the easterly slope of a high ridge.
189		605258.901	8593.0	. \quad.	On the summit of the ridge between Logan and Walsh Glaciers.
190		$52 \quad 20 \cdot 562$	$5660 \cdot 0$. .	One-quarter mile north of the north edge of Logan Glacier, and 900 feet above it.
191		49 25-380	$5303 \cdot 7$. \cdot.	One-quarter mile south of the south edge of Logan Glacier, and 500 feet above it. This is the most southerly monument.

We certify that the foregoing is a true list of the permanent monuments established on the International Boundary between the United States and Canada along the 141st Meridian from the Arctic Ocean to Mount St. Elias, in accordance with Article II of the Convention between the United States and Great Britain, signed at Washington April 21, 1906; and that the boundary is a straight line joining adjacent monuments southward from the Arctic Ocean to Monument No. 191, from which point it continues southward along the 141st Meridian to the point of intersection with the coast boundary line, latitude $60^{\circ} 18^{\prime} 22^{\prime \prime} \cdot 3$, longitude $141^{\circ} 00^{\prime} 00^{\prime \prime}$, on the western shoulder of Mount St. Elias, as shown on the maps accompanying this report.

> J. J. McARTHUR, His Britannic Majesty's Commissioner.
> E. C. BARNARD,
> United States Commissioner.

DESCRIPTIONS OF FIELD METHODS, INSTRUMENTS, COMPUTATIONS AND MAPS.

TELEGRAPHIC LONGITUDE AT THE YUKON IN 1906.

The observatory was erected on the south bank of the Yukon about three hundred and fifty feet east of Ogilvie's line, and it was connected by a loop with the adjacent Canadian Government telegraph line, thus giving connections with Fort Egbert (Eagle City), Alaska, and with Vancouver.

The observers at these points were:-
Vancouver........Dr: O. J. Klotz, Dominion Observatory, Ottawa.
Fort Egbert......Edwin Smith, Assistant, C. \& G. Survey, Washington.
Boundary........F. A. McDiarmid, Dominion Observatory, Ottawa.
Observations were commenced on August 19, 1906, and were completed by September 3, six determinations of differences of longitude being made between both Fort Egbert and Vancouver and the Boundary. The instrument used at the Boundary was C. \& G. Astronomical Transit No. 18.

All the observers used transit instruments equipped with the travelling wire micrometer, and no observations were made for personal equation, as it was then thought that the transit micrometer practically eliminated this. A complete night's work consisted of two time sets of twelve or fourteen stars each. Each time set was observed in two parts, six or seven stars in clamp east, and the others in clamp west. Each half set contained one polar star for the determination of the azimuth of the instrument. Signals were exchanged between the sets, thus reducing to a minimum the effect of errors of clock rate. All observations were recorded automatically on a chronograph.

During these observations the chronometers were kept at as constant a temperature as possible by leaving them in "their transportation boxes, which were lined with three inches of hair padding. In this manner the variation of the temperature of the chronometers was kept within about two degrees.

In connection with the longitude work, experiments were carried out to ascertain if the times of transmission of signals going in opposite directions were identical. A possibility of difference arose from the fact that the line Vancouver to Boundary was in four sections, and at the several relay stations separate sets of two relays each were used to repeat signals going north and south, respectively. Although these repeaters, of the Weiny-Phillips type, were all alike, and their adjustments very similar, there could be no absolute assurance that they all did their work with equal rapidity, hence a small difference between transmission times north and south was possible, or even probable. The result of these experiments tended to show that the time of transmission from Boundary to Vancouver was $0 \cdot 022 \mathrm{~s}$. less than that in the opposite direction, though it was not very certain whether the difference was apparent or real, owing to the non-interagreement of certain of the results.

The computed longitude of the observation pier is $9 h .24 m .00 \cdot 027 \mathrm{~s}$., or, the pier is 17.62 feet west of the 141st Meridian. This distance was measured off and a permanent mark set on the boundary, this being the first point actually located on the meridian.

The final result for the longitude was obtained by a solution of the different longitude triangles connecting the pier near the 141st Meridian with Montreal, Harvard, and Seattle, these being assumed to be absolute points for longitude.

DIFFERENCE OF LONGITUDE BETWEEN FORT EGBERT (EAGLE), ALASKA, AND BOUNDARY, YUKON TERRITORY.

	Difference of Chronometers.			Difference of chronometer corrections, ΔT	$\begin{gathered} \text { Difference } \\ \text { of } \\ \text { longitude } \\ \Delta \lambda \end{gathered}$	v.
	From western or Egbert signals.	From eastern or Boundary signals.	Mean.			
1906.	s.	s.	s.	m. s.	s.	s.
Aug. 19.	48.144	$48 \cdot 145$	$48 \cdot 144$	- 138.188	-50.044	-0.046
	41.291	41.290	41.291	- 131.275	-49.984	$+0.014$
" 23.	$37 \cdot 181$	$37 \cdot 182$	$37 \cdot 181$	- 127.154	-49.973	$+0.025$
" 23.	27.758	27.762	27.760	-117.756	-49.996	+0.002
" 28.	$10 \cdot 077$	10.075	10.076	- 0559.988	-49.912	+0.086
" 29.	02.057	$02 \cdot 056$	$02 \cdot 057$	- 0 52.136	-50.079	-0.081
				Mean.	-49.998	$\pm 0 \cdot 016$

Observers:-Fort Egbert, Edwin Smith.
Boundary, F. A. McDiarmid.
At Boundary, the observatory was on the south bank of the Yukon River, and is 352 feet east of the "Ogilvie Line," and about 20 feet south from the bank of the river. At Fort Egbert the station was located a little southeast of the United States Military Telegraph Office.

DIFFERENCE OF LONGITUDE BETWEEN VANCOUVER, BRITISH COLUMBIA AND BOUNDARY, YUKON TERRITORY.

	Difference of Chronometers.			Difference of chronometer corrections $\triangle T$	Difference of longitude $\triangle \lambda$	Probable error.	ข.
	From western or Boundary signals.	From eastern or Vancouver signals.	Means.				
1906.	h.m. s.	s.	s.	s.	h. m. s.	s.	s.
Aug. 22.	$11150 \cdot 247$	$49 \cdot 790$	$50 \cdot 018$	-18.421	11131.597	± 0.049	-0.001
" 25.	$1130 \cdot 723$	$30 \cdot 284$	$30 \cdot 504$	$+1.046$	31.550	± 0.022	-0.046
" 27.	1114.084	$13 \cdot 635$	$13 \cdot 859$	$+17.770$	31.629	± 0.017	-0.033
" 29.	1057.959	57.516	57.738	$+33.886$	31.624	± 0.027	-0.028
" 31.	1108.610	$08 \cdot 203$	08.406	$+23.255$	31.661	± 0.018	-0.065
Sept. 2.	$1105 \cdot 078$	$04 \cdot 657$	$04 \cdot 868$	$+26.637$	$31 \cdot 505$	± 0.019	+0.091
			Weighted	Mean.	11131.596	$\pm 0 \cdot 009$	± 0.016

Observers:-Boundary, F. A. McDiarmid.
Vancouver, Dr. Otto Klotz.
Average transmission time, 0.218 s .
At Vancouver, the observatory was at Brockton Point in Stanley Park.
At Boundary, the observatory was on the south bank of the Yukon River, and was 370 feet east of the "Ogilvie Line," and about 20 feet south from the bank of the Yukon River.

DIFFERENCE OF LONGITUDE BETWEEN SEATTLE, WASHINGTON, AND SITKA, ALASKA.

	Difference of Chronometers.			Difference of chronometer corrections. $\triangle T$	Difference of longitude. $\triangle \lambda$	v
	From western or Sitka signals.	From eastern or Seattle signals.	Mean.			
1905.	m. s.	m. s.	m. $\quad \mathrm{s}$.	m. s.	m. s.	s.
May $24{ }^{1}$	$5838 \cdot 146$	$58 \quad 37 \cdot 827$	5837.986	-06 36.716	$5201 \cdot 270$	-0.055
" 251.	$46 \cdot 314$	$46 \cdot 004$	$46 \cdot 159$	- 44.985	$01 \cdot 174$	$+0.041$
" 261.	54.596	$54 \cdot 280$	54.438	- 53.150	01.288	-0.073
" 271.	5903.095	$59 \cdot 02 \cdot 807$	5902.951	-07 01.749	01.202	$+0.013$
" 281.	11.856	11.560	11.708	- 10.437	01.271	-0.056
June 13^{2}	$6126 \cdot 908$	$6126 \cdot 614$	$6126 \cdot 761$	-09 25.539	01.282	-0.007
" $18{ }^{2}$.	$6208 \cdot 960$	$6208 \cdot 707$	$6208 \cdot 834$	-10 07.755	01.079	$+0.136$
				Mean.	$5201 \cdot 215$	± 0.019

> Observers:- ${ }_{\text {1Sitka }}^{\text {Seattle, }} \quad \underset{\text { Edwin Smith. }}{\text { J. E. McGrath. }}$
> $\begin{aligned} & \text { 1Seattle, } \\ & \text { 2Sitka, } \\ & \text { Edwin Smith. } \\ & \text { Edwin Smith. }\end{aligned}$
> $\begin{aligned} & { }^{2} \text { Seattle, J. E. McGrath. } \\ & \text { Average time of transmission, } 0 \cdot 148 \mathrm{~s} \text {. }\end{aligned}$

At Sitka, transit No. 18 was mounted on a concrete pier. in the Astronomical Observatory of the United States Coast and Geodetic Survey Magnetic Station.

At Seattle, transit No. 19 was mounted on a concrete pier on the old grounds of the Washington State University, $26 \cdot 34$ meters east and 61.62 meters north of the station of 1886.

Reduction from 1905 station to 1892 station, $+0 \cdot 446$ s.
Hence the astronomic longitude of the 1892 station has been increased from 9 h .01 m .21 .48 s . as given by 1892 . chronometric observations, to 9 h .01 m .21 .935 s . in the 1905 telegraphic observations, an increase of $0 \cdot 455 \mathrm{~s}$.

DIFFERENCE OF LONGITUDE BETWEEN SITKA, ALASKA, AND VALDEZ, ALASKA.

	Difference of Chronometers.			Difference of chronometer corrections, $\triangle T$	$\begin{gathered} \text { Differcnce } \\ \text { of } \\ \text { longitude, } \\ \triangle \lambda \end{gathered}$	v
	From western or Valdez signals.	From eastern or Sitka signals.	Mean.			
1905.	m. s.	m. s.	m. s.	m. s.	m. s.	s.
Sept. 25.	3933.579	3933.488	3933.534	+ 411.103	$4344 \cdot 637$	+0.137
Oct. 14.	$3734 \cdot 767$	$3734 \cdot 629$	37 34.698	+ 610.053	. 751	$+0.023$
" 27.	36 $06 \cdot 511$	3606.390	3606.450	+ 738.436	. 886	-0.112
Nov. 24.	$\begin{array}{ll}32 & 43: 735 \\ 32 & 35: 210\end{array}$	3243.605 32	3243.670 32	+1101.122 +1109.661	. 792	-0.018 -0.031
" 25	$3235 \cdot 210$	3235.078	$3235 \cdot 144$	+1109.661	. 805	-0.031
				Mean.	43 44.774	± 0.028

[^14]At Sitka, transit No. 18 was mounted on a concrete pier in the Astronomical Observatory of the United States Coast and Geodetic Survey Magnetic Station.

At Valdez, transit No. 19 was mounted $5 \cdot 244$ meters from the center of Observatory triangulation station.

DIFFERENCE OF LONGITUDE BETWEEN VALDEZ, ALASKA, AND EAGLE (FORT EGBERT), ALASKA.

	Difference of Chronometers.			Difference of chronometer corrections, $\triangle T$	$\begin{aligned} & \text { Difference } \\ & \text { of } \\ & \text { longitude, } \\ & \Delta \lambda \end{aligned}$	v
	From western or Valdez signals.	From eastern or Eagle signals.	Mean.			
1905.	m. s.	m. s.	m. $\quad s$	s.	m. s.	s.
July 18.	$1952 \cdot 736$	$1952 \cdot 656$	1952.696	$+23.571$	$2016 \cdot 267$	-0.062
" 22.	52.922	$52 \cdot 859$	$52 \cdot 890$	$+23 \cdot 345$	- 235	-0.030
" 25.	$52 \cdot 834$	$52 \cdot 764$	$52 \cdot 799$	$+23.470$	- 269	-0.064
Aug. 22.	$53 \cdot 283$	$53 \cdot 243$	$53 \cdot 263$	$+22.865$	- 128	$+0.077$
" 26.	49.930	$49 \cdot 870$	$49 \cdot 900$	$+26.227$	- 127	$+0.078$
				Mean....	$2016 \cdot 205$	$\pm 0 \cdot 022$

Observers:-Valdez, J. E. McGrath.
Eagle, Edwin Smith.
Average time of transmission, 0.031 s .
At Valdez, transit No. 19 was mounted $5 \cdot 244$ meters from the center of Observatory triangulation station.

At Eagle (Fort Egbert) transit No. 18 was mounted on a concrete pier a little southeast of the United States Military Telegraph Office.

DIFFERENCE OF LONGITUDE BETWEEN VANCOUVER, BRITISH COLUMBIA, AND SEATTLE, WASHINGTON.

	Difference of Chronometers.			Difference of chronometer corrections, $\triangle T$	$\begin{aligned} & \text { Difference } \\ & \text { of } \\ & \text { longitude, } \\ & \triangle \lambda \end{aligned}$	Probable error.	v.
	From western or Vancouver signals.	From eastern or Seattle. signals.	Mean.				
1905.	m. s.	m. s.	s.	s.	m. s.		s.
June 1.	217.676	217.577	$17 \cdot 626$	-50.647	308.273	± 0.027	-0.086
" 7 .	$36 \cdot 155$	$36 \cdot 012$	$36 \cdot 084$	-32.073	- 157	± 0.018	$+0.030$
" 8.	38.758	$38 \cdot 632$	$38 \cdot 695$	-29.372	. 067	± 0.026	$+0 \cdot 120$
" 9.	41.773	$41 \cdot 651$	41.712	-26.468	-180	$\pm 0 \cdot 029$	$+0.007$
" 13.	$53 \cdot 855$	53.727	53.791	-14.405	- 196	± 0.021	-0.009
" 14.	57.434	$57 \cdot 316$	$57 \cdot 375$	-10.854	. 229	± 0.018	-0.042
			Mean.....	mean	$\begin{array}{ll} 3 & 08 \cdot 184 \\ 3 & 08 \cdot 187 \end{array}$	$\pm 0 \cdot 017$	± 0.019

[^15]At Vancouver the observatory was at Brockton Point in Stanley Park.
At Seattle, the transit was mounted on concrete pier in the old State University grounds.

23565-8

ADJUSTMENT OF LONGITUDE DIFFERENCES.

	Stations.	Longitude differences (observed).	Correction for closure.	Adjusted longitude differences.
		h. m. s.	s.	$h . m$. s.
Montreal ${ }^{1}$ -	Cliff St.	+0 0831.388	$+0 \cdot 001$	+0 0831.389
Cliff St.	Dominion.	-0 00001.775	-0.048	+00001.727
Harvard ${ }^{1}$	Dominion.	-0 $181820 \cdot 543$	$+0.047$	-0 $18 \quad 20 \cdot 590$
Cliff St.	Vancouver	+3 0938.352	$+0.048$	+3 0938.400
Vancouver -	Seattle ${ }^{\text {. }}$	-0 0308.187	$+0.062$	-0 0308.249
Vancouver --	Boundary.	+11131.596	+0.008	+1 1131.604
Seattle ${ }^{1}$	Boundary ${ }^{2}$	+11439.786	-0.033	+1 1439.753

${ }^{1}$ Harvard, Montreal, and Seattle are stations in the adjusted longitude net of the United States, and their values for longitude are assumed | $\frac{1}{2}$ absolute. |
| :---: |
| See table below for adjustment of the Seattle-Boundary loop. |

By combining the different equations obtained in closing this loop and solving by the method of least squares, we get the following adjusted longitudes:-

	h.	
Montreal	454	18.634
Ottawa (Cliff St.)	02	50.023
Ottawa (Dominion)	02	51.750
Vancouver	12	28.423
Boundary (via Vancouver)	24	$00 \cdot 027$
Boundary (via Egbert)	24	$00 \cdot 027$

ADJUSTMENT OF SEATTLE—BOUNDARY LOOP.

		-	Stations.	Longitude differences (observed).	$\begin{aligned} & \text { Correction } \\ & \text { for } \\ & \text { loop closure. } \end{aligned}$	Adjusted longitude difference.
			-	$h . m . \quad s$.	s.	$h . m . \quad s$.
Seattle	-	Sitka.		+0 $5201 \cdot 215$	-0.008	+0 5201.207
Sitka	-	Valdez.		+0 4344.774	-0.008	+0 4344.766
Valdez	-	Eagle.		-0 $2016 \cdot 205$	-0.008	-0 $2016 \cdot 213$
Eagle	-	Boundary.		-00049.998	-0.009	$-00050 \cdot 007$

The correction of $0.033 s$ between Seattle and Boundary resulting from the loop closure was distributed evenly between the stations in the loop. From the above longitude differences we get the following adjusted longitudes:-

AZIMUTH OF THE LINE.

The initial point on the Boundary having been located by measuring 17.62 feet east from the longitude observation pier, a second point on the line was obtained by placing on the hill to the south of the observatory, at a distance of about one and one-quarter miles, a mark consisting of the usual box with slit and light. The azimuth of the line from the center of the pier to the mark was then observed, the off-set from the mark to the meridian computed, and a second permanent mark set on the line.

In determining the azimuth of the line from the pier to the mark, the method of " azimuth from stars near culmination" was used. The transit (C. \& G.S. Astronomical Transit No. 18) which had been used for the longitude work was employed for azimuth also, the observers being G. Clyde Baldwin of the Coast and Geodetic Survey, for the United States, and F. A. McDiarmid, of the Dominion Observatory, for Canada, the accepted azimuth being the mean of the results of their observations.

For convenience, the azimuth mark was set approximately in the center of the field of the instrument. A complete observation consisted of ten readings on the mark, ten on the star noting the times, reading the striding level, reversing the instrument in the wyes and again reading the level, ten readings on the star noting the times, and ten on the mark. All readings on both star and mark were made by the micrometer, and the star was observed just before and just after crossing the meridian. Great care was necessary in reading the striding level, as any errors here entered directly into the azimuth results with more than their full value.

If b is the inclination of the axis when the west end is high, and if z is the zenith distance of the star, the correction of the azimuth due to level is b cot z. In high latitudes the value of z is always small, and the correction for level is considerable.

The following formula was used in the reduction of the azimuth:-

$$
-\tan A=\frac{\sin t}{+\cos \varphi \cdot \tan \delta-\sin \varphi \cos t}
$$

where $A=$ the azimuth of the star.
$\varphi=$ the latitude of the place of observation,
$\delta=$ the declination of the star,
and $\quad t=$ the hour angle of the star.
If a is the right ascension of the star, and T is the chronometer time of observation and ΔT is the error of the chronometer, $t=(T+\Delta T-a)$.

In the azimuth work on the 141st Meridian ΔT is determined from time sets as for longitude determinations. The curvature correction for stars observed at culmination is practically zero.

The correction for diurnal aberration is given by

$$
0^{\prime \prime} \cdot 32 \frac{\cos A \cdot \cos \varphi}{\sin z}
$$

where $A=$ the azimuth of the star,
$\varphi=$ the latitude of the place of observation, and $z=$ the zenith distance of the star.

23565-8皆

The record of the observations follows:-
Observer-F. A. McDiarmid.

Date.		Star.	Azimuth.	v.	v^{2}.
1907.			- '		
April 29		Ursae Minoris.	$\begin{array}{lll}180 & 00 & 01.94\end{array}$	-0.19	$0 \cdot 0361$
$\text { " } 30 \text {. }$	a	66	1795959.83	+1.92	3.6864
May 1.	a	"	$1800001 \cdot 76$	-0.01	$0 \cdot 0001$
" 2	a	"	$1800001 \cdot 97$	-0.13	0.0169
April 30	6	"	1800001.94	-0.19	0.0361
May 2.	6	"	1800001.91	-0.16	0.0256
April 30	43	Helvetii Cephei	$1800001 \cdot 64$	$+0.11$	$0 \cdot 0121$
May 2.	43	"	$\begin{array}{llll}180 & 00 & 01.34\end{array}$	$+0.41$	0. 1681
April 30.		Groombridge 944	$\begin{array}{llll}180 & 00 & 01.63\end{array}$	+0.12	0.0144
" 30.		Ursae Minoris.	$1800002 \cdot 33$	-0.58	$0 \cdot 3364$
$\text { May } 2 .$	δ	"	$1800003 \cdot 10$	-1.35	1.8225
" 2.		Groombridge 750	$1800001 \cdot 66$	+0.09	$0 \cdot 0081$
					$6 \cdot 1628$

$\begin{aligned} & \text { Mean } 180^{\circ} 00^{\prime} 01^{\prime \prime} \cdot 75 \\ & \text { Probable error }= \pm .6745\end{aligned}\left(\frac{6 \cdot 1628}{12 \times 11}\right)^{\frac{1}{2}}= \pm 0^{\prime \prime} \cdot 145$
Azimuth of mark $=180^{\circ} 00^{\prime} 01^{\prime \prime} \cdot 75 \pm 0^{\prime \prime} \cdot 145$
Observer-G. Clyde Baldwin.

Mean $180^{\circ} 00^{\prime} 02^{\prime \prime} \cdot 74$
Probable error $= \pm \cdot 6745\left(\frac{19.9110}{12 \times 11}\right)^{\frac{1}{2}}= \pm 0^{\prime \prime} \cdot 262$
Azimuth of mark $=180^{\circ} 00^{\prime} 02^{\prime \prime} \cdot 74 \pm 0^{\prime \prime} \cdot 262$
Mean of two sets $=180^{\circ} 00^{\prime} 02^{\prime \prime} \cdot 25^{1}$

LATITUDE AT THE YUKON.

In connection with the longitude work, the latitude of the pier was determined by Mr. McDiarmid using "Talcott's zenith distance method." This consists in the measurement, by means of a zenith telescope, of the difference of zenith distances of two stars of nearly equal zenith distance, but on opposite sides of the zenith. The astronomical transit used in the time work was readily converted into a zenith telescope by attaching to the setting circle a good level, and by turning the eye-piece through an angle of 90° in order to have the micrometer wire move in zenith distance instead of longitudinally across the meridian.

[^16]If δ and δ^{\prime} are the declinations of the south and north stars, and z and z^{\prime} their zenith distances, the latitude is given by the equation

$$
\varphi=\frac{\left(\delta+\delta^{\prime}\right)}{2}+\frac{\left(z-z^{\prime}\right)}{2}
$$

the quantity $\left(z+z^{\prime}\right)$ being measured on the micrometer and level.
The record of the observations follows:-
F. A. McDiarmid, Observer. Latitude $64^{\circ} 40^{\prime},+$ tabulated seconds.

LINE PROJECTION.

The method used in prolonging the meridian north and south from the Yukon, on the azimuth there determined for it, was practically the same as that employed by the Mexican Boundary Commission in $1893 .{ }^{1}$ A few modifications suggested by the first season's experience were introduced, and will be referred to later.

The instructions issued with reference to tracing the line were as follows:-
The line is to be traced in the following manner, starting at a point on the 141 st Meridian. The position of a forward point (or points) near the meridian is to be determined relatively to it by micrometric measurements made independently by each observer. The observers will then compute the distance of such forward point (or points) from the meridian and will each deduce the position of a point on the meridian from the results obtained by him. The mean of these two positions will then be marked upon the ground as a point on the true meridian. This new point will serve as the starting point from which the next forward station on the meridian is to be found and established in the same manner. The micrometric measurements by each observer to fix a forward point (or points) from a given station shall consist of not less than nine pointings on the back point and of not less than nine pointings on the forward point (or points). It is expected that the two positions of a forward point on the meridian deduced from the separate observations of the two observers will, in at least 50 per cent of all the cases, subtend an angle at the instrument of less than $3^{\prime \prime}$ (15 millimeters per kilometer). If, in any case, this subtended angle is greater than $10^{\prime \prime}$ (50 millimeters per kilometer) additional observations must be secured until the agreement falls within this limit.

[^17]

Observing at a line-projection station. Indian Grave Mountain in the background.

The instrument used was a Berger \& Sons $6 \frac{1}{4}$-inch repeating theodolite, the telescope being equipped with a micrometer eyepiece magnifying twenty-five diameters. The focal length was 27 cm . and the diameter of the objective, 33 mm . One division of the micrometer head equalled $1^{\prime \prime} \cdot 72$ nearly.

The projection party established points on the meridian at distances apart varying from two or three to twenty-five miles, being governed in their choice of points by the character of the topography. Most of these "main points" were situated on more or less prominent ridges, and an effort was made to have them not less than 10 nor more than 20 miles apart, distances between these limits being found the most practical both for the projection party and for the stadia party following later.

Main projection stations were lettered south and north from the Yukon A, B, C, etc., and A_{1}, B_{1}, C_{1}^{1}, etc., respectively, station Z being on a northerly spur of Mount Natazhat and Z_{1} near the Arctic Coast, with the two stations north of it named Et and Cetera.

Heliotropes of the ordinary pattern mounted on tripods were used as fore- and back-sights and for communication, while the instrument party had a British Army pattern heliograph for communication purposes. A modification of the Morse code was used, together with special code signals relating to various features of the work. The fore-heliotrope party, by reporting on the condition of river crossings, good camping places, available feed and other features of interest, was often able to save considerable time for the parties following.

As intimated above, 10 to 15 miles proved to be the most economical working distance for the heliotropes. ${ }^{1}$ There were several sights of 25 miles or over, and the fore and rear heliotropes were sometimes able to communicate with each other when as much as 45 miles apart. One great difficulty experienced with the three parties so widely separated was the delay caused by the fact that only under the very best weather conditions were all three heliotropes in sunshine at the same time, and it was found to be more expeditious to keep the three stations closer together, as there was then a greater chance that all would be able to work at the same time.

The procedure at each station might be described as an elaboration of the ordinary transit and picket method of ranging out a line, substituting for the graphic mean of several settings of the picket, the arithmetical mean of a number of micrometer readings on a fixed target.

The transit having been carefully set over the last point determined on the line, and the rear heliotrope over some other known point on the line, usually the last previously determined point, all was in readiness to determine a new point ahead. Setting the micrometer at collimation, which was easily determined by a short series of direct and reverse readings on the rear heliotrope, and transiting through, the foreheliotrope man, who was showing his light from the ridge on which the new station was to be set, was instructed by means of the heliograph, which direction, east or west, and about how far, to move so that his light would appear about midway between the two vertical wires of the micrometer. This was usually accomplished in two or three moves, as the first move, though merely an estimate, furnished a scale by which to judge the distance between the heliotrope and the line.

The fore-heliotrope man, on being signalled that he was on approximate line, selected and marked two points about 1.5 meters apart, one on either side of the line, and set his heliotrope over one of them. It was important that he should

[^18]

DIAGRAM
-'ILLUSTRATING -
METHOD OF LINE PROJECTION
[NOT TO SCALE]
mark these points before showing his light, so that he would not move his heliotrope, after it had been read on, before marking the point, and thus lose the point and render necessary a repetition of the readings. The readings being completed, the heliotrope was set over the second point which was likewise read on. The distance between the two points had meanwhile been carefully measured by the fore-heliotrope man and was now transmitted to the instrument party and, using this as a base and knowing the deflection angles to the two points as read by the micrometer, a simple proportion gave the position of the true line with reference to either point. This position was then communicated to the fore-heliotrope man, who measured the offset to the true line, marked the position and erected a signal in the usual manner.

The original scheme followed in these micrometric measurements was as follows:-

1. Set the micrometer approximately at its "collimation reading."
2. Point approximately on the rear signal with telescope direct using the upper or lower tangent screw and then leave both horizontal circles clamped until the completion of the set.
3. Point three times with the micrometer on the rear signal, transit through and point three times with the micrometer on the forward signal, reverse the telescope in the wyes and point three times on the rear signal. This constitutes one "set."
4. Level the horizontal axis with the stride level after the approximate pointing on the rear signal at the beginning of the set, and relevel, between, not during, sets as often as necessary.
5. In making the computation of the angle of deflection,
(a) Take the means of the pointings in each group of three;
(b) Take out the collimation value, $C=\frac{(\text { Back } D+\text { Back } R)}{2}$
(c) Then the angle of deflection, $= \pm($ Back $D-C) \pm$ (Forward D-C), in which the algebraic signs must be studied out for the particular instrument and conditions.

The observations were made in alternate sets by a United States and a Canadian observer. If the means of their first three sets did not agree to within $5^{\prime \prime}$ (2.8 divisions of the micrometer head) each took

Line-projection cairn. another set and continued doing so until the means of all their sets agreed to within the above limit, no set being discarded unless there was some special reason to doubt it.

During the first season, the observing scheme was slightly changed so that one "set" (see section 3 above) consisted of two groups of three pointings each on the fore as well as on the rear signal, four groups of three pointings each thus constituting a set. It was also found that clearness in recording was greatly aided by substituting "circle east" and "circle west" for "direct" and "reverse." This modified programme of observing gave a better value for the collimation by taking the mean of the four groups instead of two only,
and it also provided a check on the value of the deflection angles by using, in addition to the formula in section 5 (c) above, the corresponding formula, \pm (Back $R-C$) \pm (Forward $R-C$). It was found, however, to be simpler and more expeditious in practice to make the check by the formula

$$
\frac{ \pm(C E . S-C W \cdot N) \pm(C E \cdot N-C W \cdot S)}{2}
$$

where $C E=$ circle east, $C W=$ circle west, $S=$ sighting south and $N=$ sighting north. The sign of each expression in brackets in the above was + or - (east or west) according as the numerically smaller term of the expression was + or - (east or west).

It was found necessary on one or two occasions for some special reason, such as shortness of provisions or lateness of the season, to use the cairn on the rear station as the backsight rather than to wait for clear weather for the heliotrope.

The only exception to this method of tracing the line occurred in the region between Mounts Natazhat and St. Elias where, as detailed in the narrative, ${ }^{1}$ it was impossible to project the line south in the usual manner, and the only place between these two points where it was found practicable to mark the line was in the vicinity of the Logan and Walsh Glaciers, where three monuments were set. Here the line was established in accordance with the decision of the Commissioners, who agreed that when a point on the 141st Meridian on Chitina River or Glacier had been determined, the line north and south from that point should be drawn on the azimuth derived from the triangulation. Astronomical observations for azimuth taken at this point or at other convenient points were to be used as a check merely.

SUMMARY OF LINE PROJECTION.

Year.	Number of sights.	Longest sight.	Shortest sight.	Average sight.	Total mileage, approximate.
		miles	miles	miles	
1907.	10	$45 \cdot 0$	$0 \cdot 3$	$13 \cdot 12$	$125 \cdot 5$
1908.	8	$27 \cdot 0$	$2 \cdot 0$	9.4	75.0
1909.	4	17.5	$10 \cdot 0$	$13 \cdot 0$	$52 \cdot 0$
1910.	11	21.0	$5 \cdot 8$	$14 \cdot 1$	$155 \cdot 0$
1911.	9	$24 \cdot 1$	$6 \cdot 2$	$13 \cdot 6$	$122 \cdot 5$
1912.	3	$12 \cdot 2$	3.9	8.5	25.5
	45	$45 \cdot 0$	$0 \cdot 3$	$12 \cdot 35$	$555 \cdot 5$

${ }^{1}$ Page 75 et seq.

LINE PROJECTION DIVERGENCE TABLE.
South from the Yukon River.

North from the Yukon.

Brab.	C	A_{1}	$6 \cdot 9$	W	$0 \cdot 026$	E	$0 \cdot 026$	
Brab.	C	B_{1}	17.8	E	$0 \cdot 049$	W	$0 \cdot 049$	
C.	B_{1}	C_{1}	9.9	E	$0 \cdot 364$	W	$0 \cdot 364$	
C.	B_{1}	D_{1}.	$16 \cdot 7$	E	$0 \cdot 777$	W	0.777	
B_{1}.	D_{1}	E_{1}	$7 \cdot 7$	W	$0 \cdot 279$	E	$0 \cdot 279$	
D_{1}	E_{1}.	F_{1}.	5.9	E	$0 \cdot 361$	W	$0 \cdot 361$	
E_{1}.	F_{1}	G_{1}	$15 \cdot 7$	E	$0 \cdot 399$	W	$0 \cdot 399$	-
F_{1}.	G_{1}.	H_{1}	$20 \cdot 3$	E	$0 \cdot 002$	W	$0 \cdot 002$	
G_{1}	H_{1}.	I_{1},	13.9	E	$0 \cdot 238$	W	0.238	
H_{1}	$\mathrm{I}_{1} \ldots$	J_{1}	$10 \cdot 7$	E	$0 \cdot 231$	W	$0 \cdot 231$	
I_{1}.			$12 \cdot 6$	E	$0 \cdot 542$	W	$0 \cdot 542$	
J_{1}	K_{1}	L_{1}.	$14 \cdot 9$	W	$0 \cdot 366$	E	$0 \cdot 366$	
K_{1}.	L	M_{1}	$13 \cdot 5$	W	$0 \cdot 065$	E	$0 \cdot 065$	
L_{1}.	M_{1}	N_{1}.	21.0	W	$0 \cdot 108$	E	$0 \cdot 108$	
M_{1}	N_{1}.	O_{1}	$14 \cdot 6$	W	$0 \cdot 011$	E	0.011	
N_{1}.	O_{1}	P_{1}.	$15 \cdot 8$	W	$0 \cdot 350$	E	$0 \cdot 350$	
O_{1}.	P_{1}.		$11 \cdot 3$	E	$0 \cdot 321$	W	$0 \cdot 321$	
P_{1}.	Q_{1}.	R_{1}.	21.6	W	0.098	E.	0.098	
Q_{1}	R_{1}.	S_{1}	$24 \cdot 1$	E	4.696	W	$4 \cdot 696$	
R_{1}.	S_{1}.	T1.	$11 \cdot 5$	E	$0 \cdot 177$	W	$0 \cdot 177$	
S_{1}.	T 1.	U_{1}.	$11 \cdot 4$	W	$0 \cdot 075$	E	0.075	

Line projection divergence table-Con.
North from the Yukon-Concluded.

Rear Point.	Inst. Station.	Advance Point.	Length of foresight.	Position of Observers' independent lines relative to line marked.		Remarks.	
				United States.	Canadian.		
			Miles.	Feet.	Feet.		
T ${ }_{1}$	U_{1}.	V_{1}	$6 \cdot 3$	W 0.049	E 0.049		
U_{1}.	V_{1}.	W_{1}	$9 \cdot 6$	W 0.318	$\mathrm{E} \quad 0.318$		
V_{1}.	W_{1}.	X_{1}.	$14 \cdot 1$	E 0.187	W 0.187		
W_{1}	X_{1}.	Y1	$10 \cdot 3$	W 0.091	E 0.091		
X_{1}.	Y_{1}.	Z_{1}.	18.6	$\begin{array}{ll}\text { W } & 0.094 \\ W & 0.141\end{array}$	$\begin{array}{ll}\mathrm{E} & 0.094 \\ \mathrm{E} & 0.141\end{array}$		
Y_{1}.	Z1.	Et..	3.9	W $\quad 0.141$	$\mathrm{E} \quad 0.141$		
Z1.	Et.	Cetera.	$10 \cdot 8$	E 0.259	W 0.259		

TRIANGULATION, INCLUDING RECONNAISSANCE AND BASE MEASUREMENTS.

The boundary for practically its whole length, except the Natazhat-St. Elias section, was "straddled" by a triangulation net which gave control for the topography, checked the line projection, gave distances along the line and enabled geographic positions to be computed for all monuments set.

In the Natazhat-St. Elias section, as already explained in the general narrative, the triangulation, instead of following the line, was diverted up the valley of the White River, across Skolai Pass, thence down the Chitistone and Nizina valleys and up the Chitina valley to the vicinity of the line, thus avoiding the rough and almost inaccessible country along the boundary.

This triangulation was carried out under the "General Instructions of the United States Coast and Geodetic Survey" for tertiary triangulation, though the greater portion of the work was sufficiently well done to class as secondary.

Reconnaissance.

The reconnaissance, covering the selection of triangulation points and the erection of the signals, was done by plane table, using the same method as employed by the United States Geological Survey on the Lower Colorado, and by the United States and Canada Boundary Commission on the 49th Parallel through the Cascade Mountains.

On a scale of one mile to the inch, a starting base was projected on the plane-table sheet, such, for instance, as a line joining two points whose positions were already known. These points were then occupied, the plane table oriented with the opensight alidade and lines drawn to hills or ridges on which stations might possibly be located. These latter points were then occupied, location being made by resection, intersection, or by the three-point method, and the strongest figure was selected, the lines of sight verified by the binoculars, and the signals erected. This method of reconnaissance, used by a capable man with a good sense of topography, was found to be a most satisfactory and expeditious way of covering a given area with a triangulation net.

The plane table employed was 17 by 20 inches, with a special roller at each end carrying 15 feet of heavy waterproof paper, which was simply rolled along as the work progressed, instead of changing the sheets in the usual manner. An ordinary 10 -inch open-sight alidade was used, and the tripod had a Johnson head.

The instrument work on the triangulation proper was done with Berger \& Sons' $6 \frac{1}{2}$-inch theodolites similar to those used on line projection, without the micrometer eye-piece, and with the horizontal circles reading by verniers to 10 seconds and the 4 -inch vertical circles to 30 seconds. The horizontal angles were determined by three observations on the angle "direct" and three "reverse," then three "reverse" and three "direct" on the explement. The horizon was always closed at main scheme stations, and the error of closure divided equally among the angles. If the closing error averaged more than 1.5 seconds per angle, enough additional observations were made to ensure the location of the error. If the average closing error of all the triangles in a quadrilateral exceeded 6 seconds, enough stations were re-occupied to bring the error within the limit. On vertical angles, at least one reading

Signal and scaffold at West Base, White River. "direct" and one "reverse" were made on each object sighted.

Where necessary, a wind shield was used to protect the instrument from the effects of the wind. This shield was usually made of silk about five feet by eight feet, and was supported on alpenstocks or other poles, or by cairns.

The signals were of two general classes, tripod and cairn. A pole, 12 to 16 feet in length, formed the signal proper, usually with the targets facing the principal lines of sight. These targets were generally of white cotton and about three feet square with a black centre about one foot square. To enable them to be picked up more easily and to assist in identification, a small "flutter" or flag was often used at the tip of the pole. The pole was supported by other poles as braces, where possible, using three or four as most convenient, but where poles were scarce a stone cairn was substituted, usually about five feet in height and three to four feet in diameter at the base. These latter signals proved very satisfactory, especially on skyline stations, but were rather inconvenient as they took some time to build and had to be either torn down and rebuilt after they had been occupied, or had to be occupied eccentrically, whereas the tripod signal could be easily lifted aside or, if high enough, the lower part of the center pole could be cut away and the station occupied without disturbing the signal.

Practically the only exceptions to this general classification were where towers and scaffolds had to be erected to ensure sufficient elevation, as, for instance, on some of the bases.

In all cases the stations were marked by a drill-hole in rock in place, if possible, or in a stone set flush with the general surface of the ground, the drill-hole being surrounded

Yukon River, East Base.
by a triangle cut in the rock to assist in recovering and identifying it.

Bases.

During the progress of the work seven bases ${ }^{1}$ were measured in connection with the triangulation, their location being as follows:-
Base No. 1-Yukon River. . . South bank, crossing the line.
2-Sixtymile River. North side, west of the line.
3-White River.... South bank, crossing the line.
4-Porcupine...... On plateau, south of the river.
5-Firth River. . . Across valley, west of the line.
6-Nizina River...On gravel bars, opposite Dan Creek.
7-Chitina River. . On gravel bars, upper river.
These bases were measured in the usual manner with a 50 -meter invar tape at a tension of fifteen kilogrammes and supported at the center, the base line having been previously prepared by opening out and clearing, and by setting stakes every 25 meters, each alternate stake having a small piece of brass attached to it on which the tape length was marked with a sharp awl. A thermometer was attached to the tape a few feet from each end and the temperatures recorded, and a line of levels was run over the tops of the stakes to get the correction for slope. The usual precautions were observed as to measuring at night, and while there was little wind, and at least two measurements were made of each base.

Considerable difficulty was experienced in some places in making the base line stakes solid owing to the shallow depth at which frost was encountered. By digging holes in the frozen ground with a pick and by bracing the stakes strongly, they were made quite firm and stable. The base ends, where possible, were marked by small concrete piers set flush with the ground, with a bolt or screw to mark the exact point.

Adjustment of the Triangulation along the 141st Meridian.

As detailed in the summary herewith, the triangulation was adjusted in sections, adopting the located Boundary Line as the true 141st Meridian, and the positions of all triangulation points on the Boundary Line were held thereon.

South of the Yukon.-1907-From the Yukon Base to the Sixtymile Base, 53 miles. There were fifty-three closed triangles in the main scheme of this triangulation.
The maximum triangle closure was $10^{\prime \prime} \cdot 3$.
The average triangle closure was $2^{\prime \prime} .99$.
The maximum correction to an observed direction was $2^{\prime \prime} \cdot 7$.
The average correction to an observed direction was $0^{\prime \prime} \cdot 87$.
The probable error of an observed direction was $\mp 1^{\prime \prime} \cdot 12$.

[^19]The length carried from the Yukon Base to the Sixtymile Base by observed angles has a discrepancy of 16 in the sixth place of logarithms or about 1 in 27,000 . The work was adjusted by quadrilaterals and the discrepancy between the Sixtymile Base and the Yukon Base was distributed in the two quadrilaterals preceding the Sixtymile Base. The discrepancy was but 7 in the sixth place of logarithms or about 1 in 62,000.

1908-From the Sixtymile Base to the line "Scottie-Tanana," 77 miles.
For the adjustment of this triangulation the line "Divide-Crag," as determined by the previous adjustment, was considered fixed. The work was adjusted in one piece, two line-points, M_{1}, (Monument No. 150), and O, (near Monument No. 158), being included in the adjustments. There were forty-six closed triangles and four concluded triangles in the main scheme.

The maximum triangle closure was $11^{\prime \prime} \cdot 4$.
The average triangle closure was $3^{\prime \prime} \cdot 3$.
The maximum correction to an observed direction was $4^{\prime \prime} \cdot 0$.
The average correction to an observed direction was $0^{\prime \prime} .94$.
The probable error of an observed direction was $\pm 1^{\prime \prime} \cdot 21$.
The positions of the triangulation stations were computed, using the adjusted angles, and it was found that the Line at M_{1} was $0^{\prime \prime} \cdot 120$ west of the 141 st Meridian, and that the azimuth of the line $\mathrm{M}_{1}-\mathrm{O}$ was $8^{\prime \prime} \cdot 9$ too great. To hold the positions of the stations M_{1} and O on the meridian it was necessary to put into the adjustment a longitude equation and an azimuth equation. In this adjustment the maximum correction to an observed direction was $3^{\prime \prime} \cdot 7$; the average correction to an observed direction was $0^{\prime \prime} \cdot 97$; the probable error of an observed direction was $1^{\prime \prime} \cdot 26$.

1909-From the line "Scottie-Tanana" to the White River Base, 74 miles.
The line "Scottie-Tanana" as determined by the previous adjustment was considered fixed. The work was first adjusted by quadrilaterals, the line point Z, one mile and a half south of Monument No. 187A, being included in the last quadrilateral south on the meridian.

In the adjustment of the main scheme there were eighty-five closed triangles and four concluded triangles.

The maximum triangle closure was $14^{\prime \prime} \cdot 8$.
The average triangle closure was $3^{\prime \prime} \cdot 7$.
The maximum correction to an observed direction was $5^{\prime \prime} \cdot 9$.
The average correction to an observed direction was $1^{\prime \prime} \cdot 16$.
The probable error of an observed direction was $\pm 1^{\prime \prime} \cdot 56$.
After the adjustment by quadrilaterals it was found that the discrepancy in the length of the White River Base was 19 in the seventh place of logarithms, or 1 in 227,000 . After computing the positions it was found that the line point Z was $0^{\prime \prime} \cdot 484$ west of the meridian. To hold the position of this point on the meridian, an adjustment was made by selecting the best chain of triangles running through the scheme and distributing the longitude and length discrepancies in them. The remaining triangles in the main scheme were then computed by the use of two sides and the included angle.

1912-From White River Base to the westward through Skolai pass to the Nizina Base.

The line "Bend-Skolai" of the previous adjustment was considered fixed. The work was first adjusted by quadrilaterals. In the main scheme there were thirty-six closed triangles and eighteen concluded triangles.

The maximum triangle closure was $15^{\prime \prime} \cdot 9$.
The average triangle closure was $6^{\prime \prime} \cdot 45$.

The maximum correction to an observed direction was $6^{\prime \prime} \cdot 8$.
The average correction to an observed direction was $1^{\prime \prime} \cdot 80$.
The probable error of an observed direction was $\pm 2^{\prime \prime} \cdot 47$.
After the triangles had been computed there was a discrepancy of 80 in the sixth place of logarithms or about 1 in 5,400 in the length of the Nizina Base. This was distributed in the best chain of triangle between the line "Skolai-Bend" and the Nizina base.

1913-From the Nizina base to the Chitina Base and east and south of the 141st Meridian and Mount St. Elias.

The line "Finis-Terminus" of the previous adjustment was considered fixed. The work was first adjusted in the field, and the monuments placed on the 141st Meridian.

In the office the work was adjusted in one piece and the monuments held on the 141st Meridian.

In the main scheme there were forty-two closed triangles and twenty-two concluded triangles. The discrepancy in the length of the Chitina River base was 45 in the sixth place of logarithms, or about 1 in 9,800 .

The maximum triangle closure was $27^{\prime \prime} \cdot 7$.
The average triangle closure was $6^{\prime \prime} \cdot 72$.
The maximum correction to an observed direction was $10^{\prime \prime} \cdot 9$.
The average correction to an observed direction was $2^{\prime \prime} \cdot 55$.
The probable error of an observed direction was $\pm 3^{\prime \prime} \cdot 13$.
North of the Yukon.-1909-From the Yukon Base to the line "Nation-View, N.E.," 41 miles.

The line "Loop-Plateau" of the 1907 adjustment was considered fixed
The work was adjusted first by quadrilaterals.
The maximum triangle closure was $8^{\prime \prime} \cdot 7$.
The average triangle closure was $3^{\prime \prime} \cdot 01$.
The maximum correction to an observed direction was $3^{\prime \prime} \cdot 4$.
The average correction to an observed direction was $1^{\prime \prime} \cdot 00$.
The probable error to an observed direction was $1^{\prime \prime} \cdot 33$.
The position of the line-point E_{1}, (Monument No. 99), which was connected with the main scheme was found to be $0^{\prime \prime} \cdot 041$ east of the 141 st Meridian; also the azimuth of the line E_{1} to "Back" was 3 ". 4 too great. These discrepancies were distributed in the best chain of triangles between the lines "Bush-Blow" and "Back-Pack."

1910-From the line "Nation-View, N.E." to the Porcupine Base, 153 miles.
The line "Nation-View" as determined by the previous adjustment was considered fixed. The work was first adjusted by quadrilaterals. Owing to the fact that a base was to be measured in 1911, near the Porcupine, it was decided to carry the final adjustment only as far as the line-point M_{1}, (near Monument No. 64).

In the adjustment of the main scheme there were seventy-two closed triangles and six concluded triangles.

The maximum triangle closure was $8^{\prime \prime} \cdot 8$.
The average triangle closure was $2^{\prime \prime} \cdot 4$.
The maximum correction to an observed direction was $3^{\prime \prime} \cdot 4$.
The average correction to an observed direction was $0^{\prime \prime} \cdot 71$.
The probable error of an observed direction was $\pm 0^{\prime \prime} \cdot 96$.

After the adjustment by quadrilaterals and the positions of the points had been computed, it was found that the line-point M_{1} was $0^{\prime \prime} \cdot 406$ east of the 141 st Meridian. This discrepancy was distributed in the best chain of triangles between the line "Nation-View, N.E." and the line-point M_{1}.

The line "Storm-Salmon" was now considered fixed, and the rest of the 1910 work was adjusted with the Porcupine Base.

The computation of the work as adjusted by quadrilaterals showed a discrepancy of 43 in the sixth place of logarithms, or about 1 in 10,000 in the length of the Porcupine Base; also the position of the line-point O_{1}, (near Monument No. 53), was found to be $0^{\prime \prime} \cdot 155$ east of the 141 st Meridian. These discrepancies were distributed in the best chain of triangles between the line "Storm-Salmon" and the Porcupine Base.

1911-From the Porcupine Base to the Firth Base, 92 miles.
In the adjustment of this work the line "Cone-Nassau" of the previous adjustment was considered fixed. An adjustment by quadrilaterals was made first. In the main scheme there were seventy-one closed triangles.

The maximum triangle closure was $7^{\prime \prime} \cdot 0$.
The average triangle closure was $2^{\prime \prime} .95$.
The maximum correction to an observed direction was $3^{\prime \prime} \cdot 1$.
The average correction to an observed direction was $0^{\prime \prime} \cdot 89$.
The probable error of an observed direction was $\pm 1^{\prime \prime} \cdot 13$.
After the computation of the triangles and the positions of the points, there was a discrepancy of 28 in the sixth place of logarithms, or about 1 in 15,000 in the length of the Firth Base; also the position of the line-point V_{1}, (Monument No. 20), was found to be $0^{\prime \prime} \cdot 579$ west of the 141 st Meridian. These discrepancies were distributed in the best chain of triangles between the line "Cone-Nassau" and the line-point V_{1}.

1912-From the Firth Base to the Arctic Ocean, 58 miles.
In the adjustment of this work the line "Siwash-Turner" of the 1911 adjustment was considered fixed. An adjustment by quadrilaterals was made first.

In the main scheme there were twenty-five closed triangles and ten concluded.
The maximum triangle closure was $13^{\prime \prime} \cdot 0$.
The average triangle closure was $5^{\prime \prime} \cdot 10$.
The maximum correction to an observed direction was $5^{\prime \prime} \cdot 3$.
The average correction to an observed direction was $1^{\prime \prime} \cdot 55$.
The probable error of an observed direction was $\pm 1^{\prime \prime} .98$.
After the positions of the points were computed it was found that position of the line-point Cetera, (Monument No. 1), was $0^{\prime \prime} \cdot 234$ too far west. This discrepancy was distributed through the best chain of triangles between the line "Siwash-Turner", and the line-point Cetera.

* BASE MEASUREMENTS IN DETAIL

Base.	Date Measured	Weather.	Sec-	$\begin{gathered} \text { Direc- } \\ \text { tion. } \end{gathered}$	$\begin{aligned} & \text { No. of } \\ & \text { Tape } \\ & \text { lengths. } \end{aligned}$	$\begin{gathered} \text { Mean } \\ \text { Tempera- } \\ \text { ture. } \\ \text { Centigrade. } \end{gathered}$	Correction for Temperature.	Set up and set back.	Tape Correction	Length of section.	Mean length of section.	Mean elevation.	Grade Correction.	Reduction to Sea Level.	Adopted Length of Base.
Firth..	$\begin{gathered} \text { Aug. } 14 . \\ 1911 . \end{gathered}$	$\begin{gathered} \text { cloudy } \\ \text { overcast } \\ \text { cloudy } \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~B} \\ & \mathrm{~F} \\ & \mathrm{~B} \\ & \mathrm{~F} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 21 \cdot 5 \\ & 21 \cdot 5 \end{aligned}$	$\begin{array}{r} 8.7 \\ 11 \cdot 6 \\ 13.0 \\ 12.4 \\ 9.3 \\ 11.5 \end{array}$	Meters. -0.0666 -0.0336 -0.0177 -0.0245 -0.0642 -0.0374	Meters. +0.0155 -0.0185 -0.0285 +0.0140 +6.8805 +6.8635	Meters. +0.1664 +0.1664 +0.1664 +0.1664 +0.1793 +0.1792	Meters. $1000 \cdot 1153$ $100 \cdot 1143$ $1000 \cdot 1202$ $100 \cdot 1279$ $1081 \cdot 9956$ $1082 \cdot 0053$	Meters. $\begin{aligned} & 1000 \cdot 1194 \\ & 1082 \cdot 0004 \end{aligned}$	Meters. (Entire Base) 530.66	$\begin{aligned} & \text { Meters. } \\ & \\ & \text { (Total) } \\ & -0.0317 \end{aligned}$	Meters. (Total) $-0 \cdot 1729$	Meters. $2081 \cdot 9152$
Porcupine.	$\begin{gathered} \text { June 19, } \\ 1911 . \end{gathered}$	$\begin{aligned} & \text { clear, } \\ & \text { sunny. } \end{aligned}$	1 1 2 2 2 3 3 4 4 4	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~B} \\ & \mathrm{~F} \\ & \mathrm{~B} \\ & \mathrm{~F} \\ & \mathrm{~F} \\ & \mathrm{~B} \\ & \mathrm{~F} \end{aligned}$	20 20 20 20 20 20 4 4	$\begin{array}{r} 7.6 \\ 8.8 \\ 7.2 \\ 7.8 \\ 10.2 \\ 10.2 \\ 12.2 \\ 10.0 \end{array}$	-0.0791 -0.0654 -0.0839 -0.0770 -0.0496 -0.04268 -0.0104 -0.0088	+0.3005 +0.2767 0.0000 -0.0075 -0.0200 -0.0597 +0.0217 +0.0190	+0.1664 +0.1664 +0.1664 +0.1664 +0.1664 +0.1664 +0.0333 +0.0333	$1000 \cdot 3878$ $1000 \cdot 3777$ 100.0825 100.0819 100.0898 $1000 \cdot 0799$ 200.0446 200.0435	$\begin{array}{r} 1000 \cdot 3828 \\ 1000 \cdot 0822 \\ 1000 \cdot 0884 \\ 200.0440 \end{array}$	(Entire Base) 526.04	$\begin{aligned} & \text { (Total) } \\ & -3.2373 \end{aligned}$	$\begin{aligned} & \text { (Total) } \\ & -0.2630 \end{aligned}$	3197.0971
Yukon.	$\begin{gathered} \text { June 22. } \\ 1907 . \end{gathered}$		$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	7.98 6.34 10.77	-0.1121 -0.1402	-0.2595 +0.2195	$\begin{array}{r}+0.2496 \\ +0.2496 \\ \hline+0.168\end{array}$	$\begin{aligned} & 1499 \cdot 8780 \\ & 1499 \cdot 8899 \end{aligned}$	1499.8840	281.02	-1.0758	-0.0659	1498.7423
Sixtymile	$\begin{array}{\|c\|} \hline \text { Sept. 11, } \\ 1907 . \end{array}$	cloudy	$\begin{aligned} & \hline 1 \\ & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~B} \\ & \mathrm{~F} \\ & \mathrm{~F} \\ & \mathrm{~B} \\ & \mathrm{~F} \end{aligned}$	20 20 20 20 11 11	$\begin{aligned} & \hline 11 \cdot 77 \\ & 12 \cdot 29 \\ & 12.98 \\ & 13.74 \\ & 15 \cdot 61 \\ & 15 \cdot 54 \end{aligned}$	$\begin{aligned} & -0.0431 \\ & -0.0258 \\ & -0.0179 \\ & -0.0093 \\ & +0.0065 \\ & +0.0061 \end{aligned}$	-0.1495 -0.1460 0.0000 -0.0055 +1.9685 +1.9703	+0.1664 +0.1664 +0.1664 +0.1664 +0.0915 +0.0915	999.9738 999.9946 1000.1485 1000.1516 552.0665 552.0679	$\begin{array}{r} 999.9842 \\ 1000.1501 \\ 552.0672 \end{array}$	$\begin{array}{r} 1029.66 \\ 995.36 \\ 975.72 \end{array}$	-3.5132 -0.6808 -0.0808	$-0 \cdot 1604$ $-0 \cdot 1555$ -0.0842	2547.5266
White River.....	$\begin{gathered} \text { May } 27, \\ 1999 . \\ \text { May } 29, \\ 1909 . \end{gathered}$	cloudy "̈ $"$ $"$ " 	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~B} \\ & \mathrm{~F} \\ & \mathrm{~B} \\ & \mathrm{~F} \\ & \mathrm{~B} \end{aligned}$	$\begin{array}{r} 20 \\ 20 \\ 20 \\ 20 \\ 7 \\ 7 \\ \hline \end{array}$	$\begin{array}{r} 9 \cdot 61 \\ 9 \cdot 31 \\ 5 \cdot 25 \\ 6 \cdot 20 \\ 10 \cdot 37 \\ 11 \cdot 13 \\ \hline \end{array}$	-0.0562 -0.0596 -0.058 -0.0950 -0.0167 -0.0136	-0.0600 -0.0590 0.0000 -0.0080 -4.5060 -4.5056	+0.1664 +0.1664 +0.664 +0.1664 +0.0582 +0.0582	$1000 \cdot 0502$ $1000 \cdot 0478$ $1000 \cdot 0606$ $1000 \cdot 0634$ $345 \cdot 5355$ $345 \cdot 5390$	$\begin{array}{r} 1000 \cdot 0490 \\ 1000.0620 \\ 345 \cdot 5372 \\ \hline \end{array}$	$\begin{aligned} & 888 \cdot 58 \\ & 882 \cdot 14 \\ & 877 \cdot 42 \end{aligned}$	$\begin{aligned} & -0.0532 \\ & -0.0382 \\ & -0.0358 \end{aligned}$	-0.1390 -0.1380 -0.0474	$2345 \cdot 1966$
Nizina River	$\begin{gathered} \overline{\text { Sept. 10, }} \\ 1912 . \end{gathered}$	hazy and and calm.	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \mathrm{~F} \\ & \mathrm{~B} \\ & \mathrm{~F} \end{aligned}$	20 20 20 20 11 11	$\begin{aligned} & \hline 2 \cdot 60 \\ & 4.14 \\ & 5.86 \\ & 6.63 \\ & 8.04 \\ & 8.64 \end{aligned}$	$\begin{aligned} & -0.0147 \\ & -0.0138 \\ & -0.0128 \\ & -0.0123 \\ & -0.0063 \\ & -0.0063 \\ & -0.0061 \end{aligned}$	-0.0000 -0.0062 +0.0500 +0.0441 0.0000 -0.0032 +2.7071	-0.0542 -0.0542 -0.0542 -0.0542 -0.0298 -0.0298	999.9311 999.9258 999.9830 999.9776 549.9639 549.9609	999 -9284 999.9803 549.9624 2.7071	(Entire Base) $475 \cdot 49$	$\begin{aligned} & \text { (Total) } \\ & -0.1183 \end{aligned}$	-0.1902	2552-2697
Chitina River....	$\underset{\substack{\text { May } 20, 1913 .}}{ }$		1 1 2 2	F B F B	$\begin{aligned} & 20 \\ & 20 \\ & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 7.75 \\ & 7.20 \\ & 5.40 \\ & 3.40 \end{aligned}$	$\begin{aligned} & -0.0111 \\ & -0.0114 \\ & -0.0099 \\ & -0.0108 \end{aligned}$	$\begin{aligned} & +0.0700 \\ & +0.0722 \\ & +0.0521 \\ & +0.0518 \end{aligned}$	$\begin{aligned} & -0.0563 \\ & =0.0563 \\ & =0.0451 \\ & -0.0451 \end{aligned}$	$\begin{gathered} 1000.0026 \\ 1000.00045 \\ 7999971 \\ 799.9959 \end{gathered}$	$\begin{array}{r} 1000.0035 \\ 799.9965 \end{array}$	612	(Total) $-0 \cdot 4418$	-0.1730	1799.3852

Equation of tape used in measuring Firth, Porcupine, Yukon, Sixtymile and White River Bases, $\mathrm{L}=50 \mathrm{~m} .+8.32 \mathrm{~mm} .+(\mathrm{t}-14.56 \mathrm{C}$) 0.568 mm .
Equation of tape used in measuring Nizina Base, $\mathrm{L}=50 \mathrm{~m} .-2.710 \mathrm{~mm} .+(\mathrm{t}-27.6 \mathrm{C}) 0.0294 \mathrm{~mm}$.
Equation of tape used in measuring Chitina Base, $\mathrm{L}=50 \mathrm{~m} .-2.815 \mathrm{~mm} .+(\mathrm{t}-27.4 \mathrm{C}) 0.02815 \mathrm{~mm}$.

Elevations along the 141st Meridian.

The final elevations along the 141st Meridian are based on the elevation of a benchmark at Monument No. 126 and the mean sea-level of the Arctic Ocean.

The elevation of the bench-mark at Monument No. 126 depends on the elevation of a bench-mark established at Skagway, Alaska, determined from three years' continuous readings on an automatic tide gauge established there in 1908. During the years 1908, 1909, and 1910 a line of precise levels ${ }^{1}$ was run from the bench-mark at Skagway over the White Pass and Yukon Railroad to Whitehorse, along the wagon road to Dawson and thence by wagon road and trail to Monument No. 126, where a bench-mark was set and the elevation determined.

From the bench-mark at Monument No. 126 the elevations were carried to the north and south by reciprocal vertical angles between triangulation stations. The elevations to the north were carried 385 miles, through 135 stations with 337 differences of elevation, to the Arctic Ocean, where for two weeks, in 1912, the range of the tide was observed on a graduated stake and was found to be less than one foot. The mean sea-level thus determined showed that the elevation determined by vertical angles was 2.66 meters $(8.73$ feet)too great. This discrepancy was distributed by means of a least-square adjustment of the observations.

The elevations to the south of Monument 126, when carried through the triangulation a distance of 275 miles and connected with the United States Geological Survey benchmark in the valley of the Nizina River showed a discrepancy of 1.6 meters ($5 \cdot 25$ feet), which was not distributed.

[^20]
TABLES OF GEOGRAPHIC POSITIONS.

Explanation of Positions, Lengths and Azimuths, and of the Yukon Datum.
The lengths as shown in the tables are all reduced to sea-level, and depend on the various bases measured during the progress of the survey. ${ }^{1}$ If the actual length of a line simply reduced to the horizontal is desired, it may be obtained with all the accuracy ordinarily needed by adding to the sea-level length as given, a correction equal to

$$
\text { (length of line as given) } \frac{\text { mean elev. of the two ends of line in meters }}{6,370,000}
$$

The maximum error made in the use of this approximate formula for the correction does not exceed $\frac{1}{450,000}$ of the length for any portion of this triangulation.

All the positions and azimuths have been computed upon the Clarke spheroid of 1866 , as expressed in meters, but after a spheroid has been adopted and all the angles and lengths in a triangulation have been fully fixed, it is still necessary, before the computation of latitudes, longitudes, and azimuths can be made, to adopt a standard latitude and longitude for a specified station, and a standard azimuth for a line from that station. For convenience, the adopted standard position (latitude and longitude) of a given station, together with the adopted standard azimuth of a line from that station, is called the geodetic datum.

The Yukon Datum, upon which depend the positions and azimuths given in these tables, may be defined in terms of the position of station "Boundary" at the Yukon River, astronomically determined, as follows:-

Latitude	64°	40^{\prime}	$51^{\prime \prime} \cdot 42$	$\pm 0^{\prime \prime} \cdot 164$
Longitude	141°	00^{\prime}	$00^{\prime \prime} \cdot 00$	
Azimuth to station "Bald", 270°	00^{\prime}	$00^{\prime \prime} \cdot 00$		

Points then are said to be upon the Yukon Datum when they are connected with station "Boundary" by a continuous triangulation through which the corresponding latitudes, longitudes and azimuths have been computed on the Clarke spheroid of 1866, as expressed in meters, and starting from the above data.

Connection Between the Yukon Datum and the Southeast Alaska Datum at Mount St. Elias.

The Yukon Datum is based upon one astronomic station "Boundary," near the crossing of the 141st Meridian and the Yukon river.

The latitude of this station was determined by Mr. F. A. McDiarmid in 1907, other determinations having been already made near here by Mr. Smith in 1905-6, and by Mr. McGrath in 1889-90.

[^21]By accepting Mr. McDiarmid's determination of the latitude of "Boundary," and using the triangulation of the United States Geological Survey for connections, the following station errors appear:-

$$
\begin{array}{ll}
\text { McGrath, } & \text { 1889-90 } \\
\text { Smith } & A-G
\end{array}=-3^{\prime \prime} \cdot 38
$$

where A is the astronomic value, and G the geodetic.
This station is situated on the south bank of the Yukon River, and the topography of the surrounding country indicates that the deflection of the vertical here would produce a positive error in the latitude. The amount of the error is of course unknown.

The longitude was determined by telegraphic method, ${ }^{1}$ Seattle to Sitka, Sitka to Valdez, Valdez to Eagle (Fort Egbert), and Eagle to Boundary, by Edwin Smith, J. E. McGrath, and F. A. McDiarmid; and Seattle to Vancouver, Vancouver to Boundary by F. A. McDiarmid, Dr. Otto Klotz, Edwin Smith, and J. E. McGrath; and an adjustment of this loop gave the longitude of "Boundary," upon which the Yukon Datum is based. Triangulation carried south from here for about $4 \frac{1}{2}$ degrees gave the position of Mount St. Elias as latitude $60^{\circ} 17^{\prime} 36^{\prime \prime} \cdot 24$ and longitude 140° $55^{\prime} 45^{\prime \prime} \cdot 35$.

The latitude of the Southeast Alaska Datum is based upon thirty-two astronomical latitude stations. These stations are connected by triangulation, and a datum was selected that would make the algebraic sum of the station errors zero.

The maximum station error is $8^{\prime \prime} \cdot 96$.
The average station error is $2^{\prime \prime} \cdot 55$.
Eighteen of the station errors are plus and fourteen minus.
Since a large number of latitude stations are used, and the number of plus and minus corrections are so nearly even, the addition of more latitude stations would cause little change in the datum, hence this selection could not be very much improved.

The longitude is based upon eight astronomic longitudes, all of which are chronometric. A longitude was chosen such that the sum of the station errors would be zero. In 1905 the longitude of Sitka was determined telegraphically, and this caused a change in the astronomic longitudes of five of the stations used, making the mean of the station errors $4^{\prime \prime} \cdot 14$ instead of zero.

The maximum station error is $38^{\prime \prime} \cdot 75$.
The average station error is $11^{\prime \prime} \cdot 76$.
Since the omission of one station from those forming the datum would change it by nearly five seconds, this adopted longitude cannot be considered accurate.

Three mountains, Mount Fairweather, Peak 12430 of Award, and Peak 9,500 of Award, were determined on this datum, though no triangulation was executed for a considerable area surrounding these mountains on account of the precipitousness and inaccessibility of the region.

A base was measured and an azimuth determined in the Alsek River region, and observations made upon these mountains. The resulting determination of the position of Mount Fairweather was considered better than that of either Peak 12,430 or of Peak 9,500 and the Southeast Alaska Datum was accordingly carried through this position, triangulation from here giving the position of Mount St. Elias as $60^{\circ} 17^{\prime}$ $28^{\prime \prime} \cdot 77$ latitude and $140^{\circ} 55^{\prime} 43^{\prime \prime} \cdot 11$ longitude.

[^22]The difference between the values for the position of Mount St. Elias on the two datums is $7^{\prime \prime} \cdot 47$ (231 m .) in latitude and $2^{\prime \prime} \cdot 24$ (34 m .) in longitude, this discrepancy being due to one or more indeterminate causes.

It is more than probable that the parties working from the north and from the east did not actually determine the same point on Mount St. Elias, as they could easily have sighted on points 100 to 200 meters apart.

A station error is to be expected in the latitude determination upon which the Yukon Datum is based, and this station error might make the latitude too great, thus easily accounting for the discrepancy.

By adding or omitting astronomic stations in the Southeast Alaska Datum, the longitude could be changed as much as five seconds of arc, and in carrying the Southeast Alaska Datum through Mount Fairweather there may have been an error of more than a second of arc in either the latitude or the longitude.

Arrangememt of Tables.

In the table of positions and elevations all azimuths as shown are reckoned continuously from true south around by west to 360°, south being 0°, west 90°, north 180°, and east 270°. The latitude and longitude of each point are given on the Yukon Datum, also the length and azimuth of each line observed over, whether in one or both ways. Along with the latitude and longitude of each point the lengths and azimuths are given of lines from that point to other points of the triangulation. No lengths or azimuths are repeated, and for a given line the length and azimuth will generally be found opposite the position of the first mentioned of the two stations involved.

The elevation, when known, of each point is also shown in meters and feet, this elevation, unless otherwise specified, referring to the top of the surface mark at a station, or to the top of the peak in the case of a mountain.

For the convenience of the draftsman a column of "seconds in meters" is given in which is placed the length in meters of each small arc of a meridian or parallel corresponding to the seconds of the given latitude or longitude. To facilitate further the use of the tables, a column is given of the logarithms of the lengths. It must be remembered that it is the logarithm which is first derived from the computation, the lengths given in this table being then derived from the corresponding logarithms.

The rule followed has been to give latitudes and longitudes to thousandths of seconds only for points the positions of which are fixed by fully adjusted triangulation.

In the columns giving azimuths, distances, and logarithms of distances, the accuracy is indicated to a certain extent by the number of decimal places given, it being understood that in each case two doubtful figures are given. In some cases there is very little doubt of the correctness of the second figure from the right, while in a few cases some doubt may be cast on the third figure from the right.

The tables are in two sections, the first containing the stations of the triangulation scheme; and the second, the monuments and the line projection stations.

The positions are arranged in order of decreasing latitudes from the Arctic Ocean to the Mount Natazhat region, and, for the triangulation stations, from there consecutively, beginning on the White River in the vicinity of the Boundary, following up the river,
across Russell Glacier, down the Nizina River and up the Chitina to the Logan Glacier and Mount St. Elias.

These tables may be conveniently consulted by using as finders the sketches on pages 265 to 272 and the index on pages 298 to 305 of this publication. In the third column of the index will be found for each point a reference to the page on which its description is given, in the fourth column the page on which its elevation above sea-level will be found, and in the fifth column the number of the sketch in which it appears.

The following conversion tables are inserted for the convenience of those who may wish to convert the distances or elevations given in this publication from meters to feet or from feet to meters.

CONVERSION TABLES.
Lengths-Feet to meters (from 1 to 1,000 units.)
[Reduction factor: 1 foot $=0.3048006096$ meter.]

CONVERSION TABLES-Continued.
Lengths-Meters to feet (from 1 to 1,000 units.)
Reduction factor: 1 meter $=3.280833333$ feet.]

GEOGRAPHIC POSITIONS OF TRIANGULATION STATIONS ALONG THE 141st MERIDIAN FROM THE ARCTIC OCEAN TO MOUNT ST. ELIAS.

Based on Yukon Datum.

[^23]GEOGRAPHIC POSITIONS OF TRIANGULATION STATIONS-Continued.

[^24]GEOGRAPHIC POSITIONS OF TRIANGULATION STATIONS-Continued.

Station.	Eleva	ion.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Logarithm.
High Dome, ${ }^{1} 1911$.	Meters.	Feet.	- , "	$\begin{array}{r} 1096 \\ 29 \end{array}$	- ' 1	- , "		Meters.	
			$\begin{array}{rrr}68 & 33 & 35 \cdot 37 \\ 142 & 18 & 02 \cdot 55\end{array}$		$\begin{array}{lll}275 & 25 & 20 \\ 289 & 15 & 12\end{array}$	963932 1102925	$\operatorname{Jim}_{\text {Lyn }}$	54593 57917	$\begin{aligned} & 4 \cdot 737139 \\ & 4 \cdot 762808 \end{aligned}$
Coral, 1911................ . .	$839 \cdot 7$	2755	68141141313	$1068 \cdot 2$414.8	$\begin{array}{llll}270 & 39 & 07.4 \\ 323 & 13 & 07.7\end{array}$	$905321 \cdot 2$ $1432723 \cdot 4$	Jim.	10426.9 17556.4	$4 \cdot 018154$ $4 \cdot 244435$
					$15727 \cdot 7$	$1815658 \cdot 8$	Wee.	10340-1	$4 \cdot 014523$
Jim, 1911................. .	823.4	2701	683029.950	928.0	$3595302 \cdot 8$	$1795305 \cdot 1$	Lynx	$13943 \cdot 0$	$4 \cdot 144356$
			$14058 \quad 18.891$	$214 \cdot 7$	$46 \quad 46 \quad 34 \cdot 0$	$2263151 \cdot 6$	Wee	$14850 \cdot 9$	$4 \cdot 171753$
Cone Mountain, ${ }^{1} 1911 . . .$.	\cdots	682921.06	653	3112909	1315818	Yankee	$28776 \cdot 2$	$4 \cdot 459033$
			$1414422 \cdot 64$	257	3321905	1524733	Pasture	$45726 \cdot 0$	$4 \cdot 660163$
Wee, 1911..................	$396 \cdot 9$	1302	$\begin{array}{llll}68 & 25 & 00.957\end{array}$	$30 \cdot 0$	$\begin{array}{llll}288 & 55 & 36 \cdot 3\end{array}$	$\begin{array}{llll}109 & 10 & 20 \cdot 6\end{array}$	Lynx	$11486 \cdot 9$	$4 \cdot 060202$
			$141 \quad 14 \quad 07 \cdot 471$	$85 \cdot 2$	$3093748 \cdot 2$	$1294537 \cdot 6$	Watt	$7492 \cdot 0$	$3 \cdot 874596$
					$35605 \quad 21 \cdot 2$	$1760622 \cdot 8$	Yankee	$11120 \cdot 4$	$4 \cdot 046119$
Northwest Range, 1911.....	$\ldots .$.	\ldots	$68 \quad 25 \quad 20 \cdot 00$	620	2571343	781351	Jim.	45187	$4 \cdot 655014$
			$1420257 \cdot 64$	658	2882654	1091319	Yanke	36192	$4 \cdot 558612$
					3135619	1344203	Pastu	47391	$4 \cdot 675696$
Lynx, 1911................	$1044 \cdot 4$	3427	$68 \quad 2259.957$	1857.8	3395439.9	$\begin{array}{llll}159 & 59 & 02 \cdot 4\end{array}$	Doodle.	$9428 \cdot 8$	3.974456
			$14058 \quad 16 \cdot 422$	$187 \cdot 7$	$\begin{array}{llll}54 & 09 & 08.5 \\ 78 & 34 & 23.3\end{array}$	$\begin{array}{llll}233 & 55 & 26 \cdot 1 \\ 258 & 27 & 28.5\end{array}$	Yanke	$12508 \cdot 2$	4.097195
Watt, 1911................ . .	$996 \cdot 0$	3268	$6822 \quad 26 \cdot 521$	$821 \cdot 8$	$\begin{array}{llll}313 & 03 & 42.4\end{array}$	$1 \begin{array}{llll}133 & 14 & 59.6\end{array}$	Doodle	$11434 \cdot 7$	$4 \cdot 058227$
			$1410542 \cdot 636$	$487 \cdot 3$	$383345 \cdot 6$	$2182657 \cdot 9$	Yanke	$8062 \cdot 7$	$3 \cdot 906482$
Yankee, 1911.............. .	$574 \cdot 8$	1886	$681902 \cdot 889$	$89 \cdot 5$	$2761745 \cdot 5$	$963550 \cdot 1$	Doodle	$13464 \cdot 6$	$4 \cdot 129195$
			1411301.278	$14 \cdot 6$	$22925 \cdot 5$	$1822846 \cdot 8$	Billie	$11033 \cdot 0$	$4 \cdot 042692$
					$3161004 \cdot 4$	$136 \quad 25 \quad 57.9$	Wad	17066-2	$4 \cdot 232136$
Doodle, 1911.............. .	$470 \cdot 9$	1545	$\begin{array}{llll}68 & 18 & 14.097\end{array}$	$436 \cdot 8$	$83101 \cdot 3$	$1882850 \cdot 6$	Wad	$10946 \cdot 8$	$4 \cdot 039288$
			$140 \quad 53 \quad 33.947$	$389 \cdot 2$	$554459 \cdot 9$	2352616.9	Billie	16831.6	$4 \cdot 226126$
Potato Hill, 1911........... .		.	$6816 \quad 50 \cdot 56$	1567	2342240	543025	Yankee	7051	$3 \cdot 848223$
			1412121.45	246	3430208	1630913	Pasture	18109	$4 \cdot 257890$
Billie, 1911.................	578.8	1899	$\begin{array}{llll}68 & 13 & 07 \cdot 140\end{array}$	221.2	$\begin{array}{lllll}275 & 58 & 13 \cdot 3\end{array}$	$961445 \cdot 2$	Wad	12365.9	4.092224
			1411342.937	$494 \cdot 2$	$3211652 \cdot 8$	$1413110 \cdot 7$	Spud	17091.4	$4 \cdot 232778$
					$00445 \cdot 3$	$1800444 \cdot 2$	Pastu	$10403 \cdot 8$	$4 \cdot 017190$
Wad, 1911.................	$311 \cdot 2$	1021	$68 \quad 12 \quad 24 \cdot 673$	$764 \cdot 5$	$\begin{array}{llll}7 & 52 & 39.9\end{array}$	$1875026 \cdot 2$	Spud	12155.8	4.084782
			$14055 \quad 54 \cdot 756$	$630 \cdot 5$	$5345 \quad 24 \cdot 2$	$2332851 \cdot 5$	Pasture	$15321 \cdot 3$	$4 \cdot 185296$
Pasture, 1911...............	$805 \cdot 7$	2643	$6807 \quad 31 \cdot 360$	971.7	$2851850 \cdot 3$	$\begin{array}{llll}105 & 33 & 09 \cdot 0\end{array}$	Spud	$11099 \cdot 1$	$4 \cdot 045288$
			$1411344 \cdot 182$	$510 \cdot 5$	$\begin{array}{llll}333 & 26 & 08 \cdot 4\end{array}$	$1533303 \cdot 3$	Tip.	$11600 \cdot 6$	$4 \cdot 064479$
					$3581211 \cdot 4$	$1781254 \cdot 3$	Cher	$17166 \cdot 0$	$4 \cdot 234669$
Spud, 1911................	$469 \cdot 5$	1540	$680556 \cdot 031$	$1736 \cdot 1$	$3494153 \cdot 7$	$1694536 \cdot 0$	Trap	15605.9	4-193289
			1405818.780	$217 \cdot 3$	$364651 \cdot 4$	$2163927 \cdot 8$	Tip.	9266 -1	3.966898
	$869 \cdot 7$	2853	$680457 \cdot 256$	$1774 \cdot 1$	$2533657 \cdot 0$	$734515 \cdot 8$	Spud.	$6482 \cdot 5$	$3 \cdot 811744$
			$14107 \quad 16 \cdot 409$	$190 \cdot 0$	$\begin{array}{llll}136 & 50 & 36 \cdot 2 \\ 352 & 59 & 34 \cdot 2\end{array}$	$\begin{array}{llll}316 & 44 & 36 \cdot 4 \\ 173 & 00 & 29.3\end{array}$	Pastu	$6550 \cdot 6$ 5648	$3 \cdot 816284$ 3.751936
Tip, 1911.	877.8	2880	$680156 \cdot 306$	$1744 \cdot 6$	$3132648 \cdot 7$	$1333754 \cdot 4$	Trap	11509.5	4.061056
			$1410617 \cdot 012$	$197 \cdot 4$	3433 00-3	$2142648 \cdot 5$	Cherry	$8222 \cdot 5$	3.915002
Cherry, 1911..............	$946 \cdot 4$	3105	$67 \quad 58 \quad 17 \cdot 591$	$545 \cdot 0$	$3154147 \cdot 6$	$\begin{array}{llll}135 & 57 & 20.8\end{array}$	Old Crow	16850 - 6	$4 \cdot 226615$
			$1411257 \cdot 908$	$673 \cdot 6$	$3570618 \cdot 3$	$177 \quad 07 \quad 17 \cdot 9$	Comb	14889 - 1	4-172868
Trap, 1911.	$386 \cdot 6$	1269	$675740 \cdot 414$	$1252 \cdot 1$	$64856 \cdot 5$	$\begin{array}{llll}186 & 47 & 12.9\end{array}$	Old Crow	$11011 \cdot 4$	4.041842
			1405418.956	$220 \cdot 5$	$\begin{array}{llll}42 & 01 & 44 \cdot 2 \\ 95 & 12\end{array}$	$\begin{array}{llll}221 & 45 & 27 \cdot 0\end{array}$	Comb.	18428.9	$4 \cdot 265499$
					$951201 \cdot 4$	$2745444 \cdot 2$	Cher	$13069 \cdot 2$	$4 \cdot 116250$
$\begin{aligned} & \text { Dome-shaped Mountain, }{ }^{1} \text {... } \\ & \text { 1911. } \end{aligned}$		\ldots	$\begin{array}{llll}67 & 52 & 15 \cdot 56\end{array}$	482	873651	2671132	Old Crow.	19182 - 3	$4 \cdot 282900$
			$140 \quad 28 \quad 50 \cdot 73$	593	1193923	2991547	Trap.	20464-5	4.311002
Old Crow, 1911	$595 \cdot 6$	1954	$675147 \cdot 512$	$1472 \cdot 0$	$353 \quad 2844 \cdot 4$	$17331 \begin{array}{lll}173 & 34\end{array}$	Doc.	17917.4	$4 \cdot 253275$
			$14056 \quad 10.779$	$125 \cdot 9$	382239.8 75 56	$2181245 \cdot 4$	Tiny	$12126 \cdot 6$	$4 \cdot 083740$
					$755646 \cdot 9$		Comb	$11370 \cdot 4$	4.055775
Comb, 1911.	$989 \cdot 4$	3246	$\begin{array}{lll}67 & 50 & 17.641\end{array}$	$546 \cdot 5$	$3184641 \cdot 5$	$\begin{array}{llll}139 & 03 & 54 \cdot 4\end{array}$	Doc.	19922 -5	$4 \cdot 299343$
			$1411153 \cdot 630$	$627 \cdot 4$	$91847 \cdot 0$	$\begin{array}{llll}189 & 15 & 19 \cdot 1\end{array}$	Barren	$16333 \cdot 8$	4-213088
					$33219 \quad 30 \cdot 1$	$152 \quad 2408 \cdot 8$	Tiny.	$7600 \cdot 0$	3.880813
Tiny, 1911.................	$823 \cdot 4$	2702	$674640 \cdot 327$	1249.4	$3104618 \cdot 7$	$1305852 \cdot 8$	Doc.	12659.7	$4 \cdot 102424$
			$1410652 \cdot 676$	$617 \cdot 8$	$33 \quad 2416 \cdot 4$	$2131610 \cdot 0$	Barren	$11235 \cdot 7$	$4 \cdot 050602$
	$1031 \cdot 5$	3384	$67 \quad 4246 \cdot 192$	$1431 \cdot 1$	2793723.9	$994518 \cdot 8$	Doc.	$6125 \cdot 5$	$3 \cdot 787141$
			$1410151 \cdot 121$	$601 \cdot 3$	$774436 \cdot 9$	$2573151 \cdot 6$	Barren	$9962 \cdot 4$	3.998366

[^25]EOGRAPHIC POSITIONS OF TRIANGULATION STATIONS-Continued.

Station.	Eleva	ion.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Logarithm.
Doc, 1911.	Meters.	Feet.	- ' 1		"	"		Meters.	
	$962 \cdot 3$	3157	$\begin{array}{r} 674212.917 \\ 1405317.838 \end{array}$	$\begin{aligned} & 400 \cdot 2 \\ & 209 \cdot 9 \end{aligned}$	$\begin{array}{rrr} 0 & 28 & 27 \cdot \mathbf{1} \\ 37 & 13 & 48 \cdot 7 \end{array}$	$\begin{array}{lll} 180 & 28 & 19 \cdot 0 \\ 216 & 59 & 07 \cdot 1 \end{array}$	Gun Orphan.	$12450 \cdot 8$ $18644 \cdot 3$	$\begin{aligned} & 4 \cdot 095197 \\ & 4 \cdot 270547 \end{aligned}$
Barren, 1911..............	$968 \cdot 4$	3177	674137.3471411538.189	$1157 \cdot 0$	$2654953 \cdot 1$	$861033 \cdot 2$	Doc.	$15812 \cdot 4$	$4 \cdot 198997$
				$449 \cdot 5$	$\begin{array}{lll}305 & 40 & 27 \cdot 9 \\ 341 & 35 & 40 \cdot 4\end{array}$	$\begin{array}{llll}126 & 00 & 59 \cdot 4 \\ 161 & 41 & 38 \cdot 3\end{array}$	Gun...	19378.9 14504.9	$4 \cdot 287329$ $4 \cdot 161516$
	957.9	3143	674113.821$140 \quad 378.995$	$\begin{aligned} & 428 \cdot 2 \\ & 459 \cdot 1 \end{aligned}$	$\begin{array}{rrr}344 & 18 & 03 \cdot 6 \\ 17 & 05 & 44 \cdot 1\end{array}$	$1642157 \cdot 1$	Gun	$11029 \cdot 2$	$4 \cdot 042543$
						$19659.10 \cdot 5$	Sun	$17154 \cdot 0$	$4 \cdot 234366$
Rapid, 1911...............	$683 \cdot 4$	2242	$\begin{array}{r}673757 \cdot 195 \\ 141 \\ \hline 9\end{array}$	$1772 \cdot 0$214.4	2914902.9	$1120342 \cdot 8$	Gun.	12117.8	$4 \cdot 083424$
					$\begin{array}{lllll}317 & 45 & 37.9\end{array}$	$1375414 \cdot 0$	P_{1} of the Boundary..	$9826 \cdot 3$	3.992388
					$3423240 \cdot 6$	$16236 \cdot 53 \cdot 5$	Sun..............	$10804 \cdot 6$	4-033608
Old Crow Mountain, ${ }^{1} 1910$.	1269 - 1	4164	$67 \begin{array}{lll}66 & 55 \cdot 71\end{array}$	$1726 \cdot 0$	510858	2302353	Rampart	44885	4.65210
			$140 \quad 07 \quad 55 \cdot 42$	$654 \cdot 5$	535751	2330919	Canalaska Mountain.	46513	4.66757
East End Castle Ridge, ${ }^{1} 1910$	$\ldots .$.	\ldots		$1554 \cdot 9$	382337	2181048	Cone	15906	$4 \cdot 20155$
				$549 \cdot 6$	3590816	1790831	Nassa	13145	4-11876
Gun, 1911.................. .	$989 \cdot 6$	3247	$\begin{array}{llll}67 & 35 & 31 \cdot 057\end{array}$	$962 \cdot 2$	3565539.4	$1765631 \cdot 8$	Nassau	12568.4	4.099282
			$1405326 \cdot 554$	$314 \cdot 0$	$\begin{array}{llll}38 & 22 & 19.8 \\ 54 & 18 & 58.5\end{array}$	$\begin{array}{llll}218 & 10 & 08 \cdot 1 \\ 234 & 08 & 31 \cdot 8\end{array}$	Cone	15147.0 9890.5	4.180326 3.995218
Orphan, 1911.............. .	$720 \cdot 0$	2362	$\begin{array}{rrr} 67 & 34 & 12 \cdot 991 \\ 141 & 09 & 11 \cdot 144 \end{array}$	$402 \cdot 5$	$257 \cdot 3948 \cdot 3$	775421.5	Gun	$11430 \cdot 7$	$4 \cdot 058074$
				$131 \cdot 8$	$3164708 \cdot 1$	$1365114 \cdot 6$	Sun	$4611 \cdot 7$	$3 \cdot 663857$
					$3490924 \cdot 4$	$1691145 \cdot 6$	Cone	$9644 \cdot 8$	3.984294
Castle Peak, ${ }^{1} 1910$.	\ldots		$10 \cdot 2$		2053448	Cone	10072	4.00310
			$\begin{array}{llll}140 & 00 & 30.89\end{array}$	$365 \cdot 5$	3293506	1494231	Nassau	11287	$4 \cdot 05257$
West End Castle Ridge ${ }^{1} \ldots$.		\ldots	$673224 \cdot 46$	757.8	122733	1922548	Cone.	6258	3.79641
			$1410444 \cdot 67$	$529 \cdot 1$	3074412	1275531	Nassau	11037	4.04285
Sun, 1911...........	$753 \cdot 3$	2471	673224.447	$757 \cdot 4$		$127 \quad 55 \quad 33.7$	Nassau.	$11036 \cdot 3$	$4 \cdot 042822$
			$1410444 \cdot 618$	$528 \cdot 5$	$12 \quad 2753 \cdot 7$	$1922608 \cdot 6$	Cone.	$6257 \cdot 5$	3.796404
"b".		\ldots	$673050 \cdot 63$	$1568 \cdot 6$	3495743	1695814	Monument No. 48.	2277.8	$3 \cdot 35752$
			$1410033 \cdot 44$	$396 \cdot 6$	$\begin{array}{llll}53 & 33 & 09\end{array}$	2332732	Cone	5387.0	3.73135
					1342026	3141634	Sun.	$4160 \cdot 9$	$3 \cdot 61919$
Cone, 1910.........	$732 \cdot 6$	2404	$\begin{array}{lll}67 & 29 & 07 \cdot 218\end{array}$	223.6	$3325305 \cdot 4$	1530214.4	Rampar	$15572 \cdot 5$	$4 \cdot 192359$
			$1410638 \cdot 355$	$455 \cdot 6$	$34547 \cdot 2$	$1834415 \cdot 0$	Chasm.	$18199 \cdot 1$	$4 \cdot 260049$
Peak East of Cone, ${ }^{1} 1910 .$.			672851.45	1594.0	3203753	1404056	Wan 2..............	3722	$3 \cdot 57075$
			$1410218 \cdot 81$	$223 \cdot 4$	3451900	1652150	Fire Hill	8671	$3 \cdot 93808$
Nassau, 1910..............	$740 \cdot 6$	2430	$67 \quad 2845 \cdot 959$	1423.9	$1255 \quad 25 \cdot 3$	$1925130 \cdot 8$	Rampart	13553.4	4-132048
			$14052 \quad 29.842$	$354 \cdot 5$	$2435 \quad 28 \cdot 4$	$2042807 \cdot 5$	Canalaska Mountain.	$13690 \cdot 9$	$4 \cdot 136433$
					$325834 \cdot 3$	$2124358 \cdot 7$	Chasm	20833-7	$4 \cdot 318767$
					$935053 \cdot 8$	$2733750 \cdot 0$	Cone	$10099 \cdot 0$	$4 \cdot 004277$
June, 1911................ .	$706 \cdot 4$	2318	$\begin{array}{lll}67 & 27 & 36 \cdot 120\end{array}$	$1119 \cdot 0$	$1173003 \cdot 0$	$2972300 \cdot 3$	Cone	$6124 \cdot 1$	$3 \cdot 787045$
			$14059 \quad 00 \cdot 917$	$10 \cdot 9$	24459 00-2	$650501 \cdot 4$	Nassau	$5126 \cdot 1$	$3 \cdot 709791$
Wan 2, 1910.............	$677 \cdot 8$	2224	$\begin{array}{rrr} 67 & 27 & 18 \cdot 542 \\ 140 & 59 & 00 \cdot 265 \end{array}$	$\begin{array}{r} 574 \cdot 4 \\ 3 \cdot 2 \end{array}$	$14435 \cdot 9$	1814422.9	Fire Hill.	$5513 \cdot 1$	$3 \cdot 741398$
					$60446 \cdot 5$	$18603 \quad 26 \cdot 2$	Canalaska Mountain.	$9801 \cdot 9$	3.991312
					$124217 \cdot 3$	$1924014 \cdot 6$	Flat 2.	$7205 \cdot 0$	$3 \cdot 857633$
					$\begin{array}{llll}24 & 17 & 12 \cdot 8\end{array}$	$20408 \quad 37 \cdot 9$	Chasm.	$16220 \cdot 4$	4.210062
					$465422 \cdot 0$	$2264925 \cdot 4$	Sunset 2	$5236 \cdot 7$	$3 \cdot 719055$
					$1214748 \cdot 7$	$3014045 \cdot 7$	Cone.	$6400 \cdot 5$	3-806212
					$3511055 \cdot 6$	$1711301 \cdot 6$	Rampart	$10653 \cdot 2$	4-027479
Porcupine, 1911.............	$658 \cdot 7$	2161	$\begin{array}{lll}67 & 25 & 39.424\end{array}$	1221.4	$17345 \quad 21 \cdot 0$	$3534426 \cdot 2$	Cone.	$6476 \cdot 2$	$3 \cdot 811319$
			1410539.039	$464 \cdot 7$	$\begin{array}{lll}232 & 35 & 30 \cdot 6 \\ 238 & 16 & 24 \cdot 6\end{array}$	$\begin{array}{llll}52 & 41 & 38 \cdot 3 \\ 58 & 28 & 33 \cdot 5\end{array}$	June.	5958.2 11021.1	3.775118 4.042223
Sunset 2, 1910......... . .	$619 \cdot 5$	2032	$67 \quad 25 \quad 22.974$	711.8	$102927 \cdot 0$	$19025 \quad 20 \cdot 2$	Junction 2	$17604 \cdot 7$	$4 \cdot 245629$
			$1410421 \cdot 440$	$255 \cdot 3$	$141025 \cdot 8$	$1940647 \cdot 3$	Chasm.	$11563 \cdot 3$	$4 \cdot 063082$
					$1664944 \cdot 2$	$3464737 \cdot 8$	Cone.	$7135 \cdot 5$	$3 \cdot 853425$
					$\begin{array}{lllll}233 & 17 & 30 \cdot 1\end{array}$	$\begin{array}{rrrr}53 & 28 & 27 \cdot 3\end{array}$	Nassau.	$10543 \cdot 3$	4.022975
					$3214157 \cdot 6$	$1414900 \cdot 1$	Rampart	$8814 \cdot 7$	3.945209
					$3353652 \cdot 3$	$1554028 \cdot 5$	Canalaska Mountain.	$6769 \cdot 0$	$3 \cdot 830525$
Turner's Astronomic Station, 1910.	$250 \cdot 3$	821	$\begin{array}{r}6725 \\ 140 \\ 59 \\ \hline 14\end{array}$		5 $3918 \cdot 7$	$1853836 \cdot 7$	Canalaska Mountain.	$5510 \cdot 2$	3-741169
				$497 \cdot 3$	$213043 \cdot 7$	$2012919 \cdot 3$	Flat 2.,	$2972 \cdot 3$	3.473096
					$6117 \quad 02 \cdot 4$	$2411614 \cdot 8$	Turner's North Monument.	$699 \cdot 8$	$2 \cdot 844987$
					$\begin{array}{llll}345 & 19 & 19.5\end{array}$	$1651944 \cdot 8$	Fire Hill	$1289 \cdot 1$	$3 \cdot 110278$
Rampart Storehouse Flagstaff, ${ }^{1} 1910$.			$672458 \cdot 76$ 1405949.73	$1820 \cdot 4$ $592 \cdot 3$	2014 340 20	$\begin{array}{lll}200 & 13 & 02 \\ 160 & 20 & 40\end{array}$	Flat 2............ Fire Hill.........	2875.9 1253.1	3.45877 3.09798

[^26]GEOGRAPHIC POSITIONS OF TRIANGULATION STATIONS—Continued.

Station.	Elevat	ion.	$\begin{gathered} \text { Latitude } \\ \text { and } \\ \text { longitude. } \end{gathered}$	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Logarithm.
Turner's North Monument, 1910.	Meters.$378 \cdot 1$	Feet. 1241	$\begin{array}{rrc\|} \circ & \prime & \prime \prime \\ 67 & 24 & 50 \cdot 068 \\ 141 & 00 & 33 \cdot 284 \end{array}$	$\begin{array}{r} 1551 \cdot 2 \\ 396.4 \end{array}$	- , "	- ' ${ }^{\prime}$		Meters.	
					$110442 \cdot 8$	$1910406 \cdot 0$	Flat 2.	$2475 \cdot 3$	$3 \cdot 393622$
					$\begin{array}{llll}193 & 31 & 09 \cdot 2\end{array}$	$\begin{array}{llll}13 & 32 & 35 \cdot 1\end{array}$	Wan 2	$4731 \cdot 2$	3.674972
						$\begin{array}{lll}3815 & 32 \cdot 1\end{array}$	Nassau	9299.1	3.968442
					$\begin{array}{llll}314 & 04 & 12 \cdot 4 \\ 335 & 06 & 00.9\end{array}$	$\begin{array}{llll}134 & 05 & 25 \cdot 3 \\ 155 & 09 & 32 \cdot 8\end{array}$	Fire Hill	1309.1 6507.1	$3 \cdot 116982$ $3 \cdot 813389$
					$\begin{array}{lllll}359 & 11 & 56 \cdot 8\end{array}$	$\begin{array}{ll}179 & 12\end{array} 102 \cdot 4$	Canalaska Mountain.	$5147 \cdot 7$	3.711609
Fire Hill, 1910.............	$380 \cdot 3$	1248	$\begin{array}{rrr} 67 & 24 & 20 \cdot 672 \\ 140 & 59 & 14 \cdot 341 \end{array}$	$\begin{aligned} & 640 \cdot 4 \\ & 170 \cdot 9 \end{aligned}$	$\begin{array}{llll}11 & 36 & 25 \cdot 7\end{array}$	$1913518 \cdot 4$	Canalaska Mountain.	$4324 \cdot 7$	3.635959
					$430121 \cdot 6$ 1175134.9	$\begin{array}{lllll}222 & 59 & 31 \cdot 9 \\ 297 & 46 & 51.4\end{array}$	Flat 2.	2076.5 4135.8	$3 \cdot 317330$ $3 \cdot 616555$
					$\begin{array}{llll}117 & 51 & 34 \cdot 9 \\ 149 & 18 & 24 \cdot 5\end{array}$	$\begin{array}{lll}297 & 46 & 51 \cdot 4 \\ 329 & 11 & 34 \cdot 5\end{array}$	Sunset	4135.8 10329.8	$3 \cdot 616555$ $4 \cdot 014091$
					$2101749 \cdot 4$	$302403 \cdot 0$	Nassau	$9524 \cdot 0$	3.978817
					$340 \quad 12 \quad 00 \cdot 3$	$1601419 \cdot 3$	Rampar	$5306 \cdot 0$	$3 \cdot 724770$
Flat 2, 1910.............	$403 \cdot 0$	1322	$\begin{array}{rrr}67 & 23 & 31 \cdot 659 \\ 141 & 01 & 13 \cdot 180\end{array}$	$\begin{aligned} & 980 \cdot 0 \\ & 157 \cdot 1 \end{aligned}$	$\begin{array}{llll}146 & 59 & 05 \cdot 2 \\ 159 & 37 & 40.1\end{array}$	$326 \quad 5611 \cdot 4$	Sunset $2 \ldots \ldots \ldots .$.	$4113 \cdot 8$	$3 \cdot 614248$
					$\begin{array}{lll}159 & 37 & 40 \cdot 1 \\ 212 & 32 & 04 \cdot 3\end{array}$	$\begin{array}{rrr}339 & 32 & 39 \cdot 8 \\ 32 & 40 & 07 \cdot 6\end{array}$	Cone.....	$11092 \cdot 6$ 11558.5	$4 \cdot 045032$ $4 \cdot 062901$
						$13715 \quad 53.7$	Rampar	$4733 \cdot 1$	$3 \cdot 675143$
						$1683639 \cdot 3$	Canalaska Mountain.	$2772 \cdot 6$	3.442892
$\begin{aligned} & \text { Porcupine River........... . } \\ & \text { East Base, 1911. } \end{aligned}$	$481 \cdot 5$	1580	$\begin{array}{rrr} 67 & 22 & 44 \cdot 319 \\ 140 & 59 & 28 \cdot 844 \end{array}$	$1373 \cdot 0$	$681035 \cdot 5$	$248 \quad 06 \quad 45 \cdot 9$	Porcupine River, West Base. Porcupine.	$3197 \cdot 1$	$3 \cdot 504756$
				$344 \cdot 1$	$14055 \quad 51 \cdot 2$	$\begin{array}{cccc} 320 & 50 & 09 \cdot 4 \\ 2 & 06 & 37 \cdot 5 \\ 24 & 03 & 00 \cdot 7 \end{array}$		$6992 \cdot 1$	$3 \cdot 844605$
					$1820611 \cdot 7$		June..	$9046 \cdot 3$	3.956473
					$203 \quad 5633 \cdot 8$		Nassau	12263.8	4-088627
Porcupine River. West Base, 1911.	$561 \cdot 4$	1842	$\begin{array}{rrr} 67 & 22 & 05 \cdot 903 \\ 141 & 03 & 37 \cdot 552 \end{array}$	$\begin{aligned} & 182 \cdot 9 \\ & 448 \cdot 1 \end{aligned}$	$\begin{array}{lll} 167 & 40 & 07 \cdot 4 \\ 197 & 49 & 00 \cdot 4 \\ 212 & 35 \cdot 27 \cdot 0 \end{array}$	$\begin{array}{rrr} 347 & 38 & 15 \cdot 3 \\ 17 & 53 & 15 \cdot 8 \\ 32 & 45 & 43 \cdot 6 \end{array}$	Porcupine June. Nassau.	$\begin{array}{r} 6771.7 \\ 10747.9 \\ 14724.5 \end{array}$	$\begin{aligned} & 3 \cdot 830696 \\ & 4 \cdot 031324 \\ & 4 \cdot 168039 \end{aligned}$
Canalaska Mountain, 1910..	688.9	2260	$\left.\begin{array}{rrrr} 67 & 22 & 03 \cdot 928 \\ 141 & 00 & 27 \cdot 254 \end{array} \right\rvert\,$	$\begin{aligned} & 121 \cdot 7 \\ & 325 \cdot 1 \end{aligned}$	$\begin{array}{rrr} 285 & 48 & 21 \cdot 3 \\ 48 & 10 & 16 \cdot 1 \\ 161 & 25 & 48 \cdot 2 \end{array}$	$\begin{array}{lll} 105 & 51 & 47 \cdot 6 \\ 228 & 03 & 01 \cdot 4 \\ 341 & 20 & 05 \cdot 6 \end{array}$	Rampart Chasm. Cone	2772.6	3.442881
								7557.6 13838.0	$3 \cdot 878384$ 4.141074
Rampart, 1910.............	$709 \cdot 5$	2328	$\begin{array}{rrr} 67 & 21 & 39 \cdot 509 \\ 140 & 56 & 43 \cdot 775 \end{array}$	$\begin{array}{r} 1224 \cdot 0 \\ 522 \cdot 4 \end{array}$	$\begin{array}{rrr}332 & 21 & 27 \cdot 7 \\ 39 & 56 & 55 \cdot 6 \\ 62 & 44 & 56 \cdot 8\end{array}$	$\begin{array}{lll} 152 & 27 & 22 \cdot 9 \\ 219 & 45 & 46 \cdot 6 \\ 242 & 34 & 15 \cdot 9 \end{array}$	Lake. Junction 2 Chasm.	$9937 \cdot 7$	3.997288
								$13533 \cdot 6$	$4 \cdot 131413$
								9340-2	$3 \cdot 970354$
Chasm, 1910..............	593.4	1947	$\begin{array}{rrr}67 & 19 & 21 \cdot 046 \\ 141 & 08 & 18 \cdot 255\end{array}$	$\begin{aligned} & 652 \cdot 0 \\ & 218 \cdot 3 \end{aligned}$	$\begin{array}{rrr}289 & 08 & 19.8 \\ 319 & 35 & 40.5 \\ 3 & 26 & 53.4\end{array}$	$1092455 \cdot 6$	Lake...Kite.	13684.5	$4 \cdot 136229$
						$1395749 \cdot 2$		6110.6	$\begin{aligned} & 4 \cdot 427892 \\ & 3 \cdot 786084 \end{aligned}$
						$183 \quad 2625 \cdot 1$	Kite		
Lake, 1910..................	$615 \cdot 9$	2021	$\begin{array}{rrr} 67 & 16 & 55 \cdot 219 \\ 140 & 50 & 18 \cdot 806 \end{array}$	$\begin{array}{r} 1710 \cdot 7 \\ 225 \cdot 3 \end{array}$	$\begin{array}{rrrr}344 & 42 & 15 \cdot 4 \\ 14 & 03 & 03.9 \\ 34 & 27 & 49.1\end{array}$	$\begin{array}{llll}164 & 47 & 48 \cdot 8\end{array}$		$16515 \cdot 9$	$4 \cdot 217901$
						$\begin{array}{lllll}193 & 59 & 13 \cdot 1\end{array}$	Tit.	$12410 \cdot 7$	$4 \cdot 093795$
							Arch	$22882 \cdot 5$	$4 \cdot 359503$
Junction 2, 1910..........	594.9	1952	$\begin{array}{rrr} 67 & 16 & 04 \cdot 161 \\ 141 & 08 & 48 \cdot 924 \end{array}$	$\begin{aligned} & 128.9 \\ & 586 \cdot 1 \end{aligned}$	$\begin{array}{lll} 263 & 04 & 30 \cdot 5 \\ 315 & 16 & 06 \cdot 3 \\ 358 & 32 & 35 \cdot 2 \end{array}$	$\begin{array}{rrr} 83 & 21 & 34 \cdot 4 \\ 135 & 29 & 19 \cdot 0 \\ 178 \cdot 33 & 08 \cdot 9 \end{array}$	Lake. Tit. Arch 2	$13393 \cdot 1$	$4 \cdot 126882$
								$14694 \cdot 9$	$4 \cdot 167166$
								17321.1	$4 \cdot 238576$
N. A., 1912	\ldots	\ldots	$\begin{array}{rrr}67 & 12 & 12 \cdot 852 \\ 141 & 03 & 43.142\end{array}$	$\begin{aligned} & 398 \cdot 2^{\wedge} \\ & 518 \cdot 4 \end{aligned}$	$\begin{array}{rrrr}296 & 14 & 35 \cdot 1 \\ 17 & 44 & 49 \cdot 1\end{array}$	$\begin{array}{llll}116 & 23 & 05 \cdot 7 \\ 197 & 40 & 40 \cdot 9\end{array}$	Tit. Arch 2.	$\begin{array}{r} 7429 \cdot 1 \\ 10654 \cdot 6 \end{array}$	$\begin{aligned} & 3 \cdot 870936 \\ & 4 \cdot 027537 \end{aligned}$
Tit, 1910................. . . .	$686 \cdot 9$	2253	$\begin{array}{rrr} 67 & 10 & 26 \cdot 549 \\ 140 & 54 & 29 \cdot 269 \end{array}$	$\begin{aligned} & 822 \cdot 5 \\ & 352 \cdot 1 \end{aligned}$	$\begin{array}{r}297 \\ 55 \\ 56 \\ \hline 6632 \cdot 5\end{array}$	$\begin{array}{lll} 117 & 55 & 37 \cdot 6 \\ 235 & 13 & 54 \cdot 0 \end{array}$	Kite Arch 2	$\begin{array}{r} 8334 \cdot 3 \\ 12055 \cdot 0 \end{array}$	$\begin{aligned} & 3 \cdot 920871 \\ & 4 \cdot 081168 \end{aligned}$
Kite, 1910................. .	$695 \cdot 0$	2280	$\begin{array}{rrr}67 & 08 & 20.878 \\ 140 & 44 & 17.176\end{array}$	$\begin{aligned} & 646 \cdot 8 \\ & 206 \cdot 9 \end{aligned}$	$\begin{array}{llll}12 & 16 & 08 \cdot 7 \\ 23 & 35 & 08 \cdot 8 \\ 47 & 08 & 33 \cdot 5 \\ 80 & 27 & 55 \cdot 5\end{array}$	$\begin{array}{lll}192 & 08 & 39 \cdot 3 \\ 203 & 26 & 19 \cdot 1 \\ 226 & 44 & 13 \cdot 5 \\ 260 & 05 & 53 \cdot 2\end{array}$	Salmon Battle. Lone Arch 2	27961.5	4.446561 4.241127
								17423.2 26229.5	$4 \cdot 241127$ 4.418790
								$26229 \cdot 5$ $17552 \cdot 9$	$4 \cdot 4184348$ 4.244
No. 20, ${ }^{1} 1910$	$831 \cdot 2$	2727	$\begin{array}{rrrr}67 & 07 & 06.990 \\ 141 & 04 & 35.976\end{array}$	$\begin{aligned} & 216 \cdot 6 \\ & 433.9 \end{aligned}$	$753255 \cdot 0$$1694040 \cdot 1$$22941423 \cdot 9$	$\begin{array}{r}255 \\ 349 \\ 49 \\ 49 \\ \hline 9\end{array} \mathbf{5 0} 45 \cdot 43 \cdot 6$	Arch 2.............Junction $2 ~$Tit..............	2695.7	$3 \cdot 430678$
								16917.1 9571.7	$4 \cdot 228325$ $3 \cdot 980991$
Arch 2, 1910		\ldots	$\begin{array}{rrr}67 & 06 & 45 \cdot 234 \\ 141 & 08 & 12 \cdot 411\end{array}$	$1401 \cdot 3$149.8	3211557.665654.6	$\begin{array}{lll}141 & 29 & 09 \cdot 6 \\ 186 & 54 & 36 \cdot 3\end{array}$	Battle.Lone.	$16657 \cdot 2$	$4 \cdot 221602$
								$15055 \cdot 7$	$4 \cdot 177701$
Battle, 1910................ .	$920 \cdot 4$	3020	6614014353 $52 \cdot 4162$	$\begin{array}{r} 1399 \cdot 1 \\ 635 \cdot 4 \end{array}$	$\begin{array}{rrr}354 & 40 & 21 \cdot 2 \\ 33 & 04 & 09 \cdot 2 \\ 81 & 09 & 49 \cdot 8\end{array}$	$\begin{array}{lll}174 & 41 & 41 \cdot 3 \\ 212 & 50 & 54 \cdot 6 \\ 260 & 54 & 20 \cdot 0\end{array}$	Salmon Storm Lone	11401 -8	$4 \cdot 056972$
								19297.1	$4 \cdot 285491$
								12398.4	$4 \cdot 093367$
Lone, 1910..........	$656 \cdot 0$	2152	66581411042	$\begin{array}{r} 1325 \cdot 7 \\ 516 \cdot 7 \end{array}$	$\begin{array}{lll}305 & 06 & 38 \cdot 5 \\ 352 \cdot 51 & 36.8\end{array}$	$\begin{array}{llll}125 & 23 & 28 \cdot 0 \\ 172 & 53 & 51 \cdot 6\end{array}$	Salmon.Storm.	$16322 \cdot 3$	$4 \cdot 212782$
								$14370 \cdot 2$	$4 \cdot 157462$
N. B., 1912.	\ldots	$\begin{array}{r}665641 \cdot 880 \\ 14058 \\ \hline\end{array}$	$\begin{array}{r} 1297.3 \\ 40 \cdot 0 \end{array}$	$\begin{array}{lll} 112 & 13 & 05 \cdot 0 \\ 208 & 09 & 41 \cdot 7 \end{array}$	$\begin{array}{rrr}292 & 01 & 26 \cdot 3 \\ 28 & 13 & 32 \cdot 6\end{array}$	Lone....	9947.3	3.997703
								$6442 \cdot 3$	$3 \cdot 809038$
N. C., 1912..........	\cdots	\ldots	$665432 \cdot 390$1410257.766	$\begin{array}{r} 1003.4 \\ 702 \cdot 6 \end{array}$	$\begin{array}{llll}144 & 00 & 49 \cdot 7 \\ 214 & 16 & 35 \cdot 1 \\ 221 & 42 & 02 \cdot 6\end{array}$	$\begin{array}{rrr}323 & 53 & 42 \cdot 0 \\ 34 & 24 & 56 \cdot 9 \\ 41 & 46 & 33 \cdot 5\end{array}$	Lone. Battle. N. B.	$9594 \cdot 0$	3.982000
								11735.55375.9	4.069502
									$3 \cdot 730450$

[^27]GEOGRAPHIC POSITIONS OF TRIANGULATION STATIONS-Continued.

Station.	Eleva	ion.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Logarithm.
	Meters.	Feet.	- , "		- , "	"		Meters.	
Salmon, 1910.	$1303 \cdot 1$	4275	$\begin{array}{r}6653 \\ 140 \\ 52 \\ \hline 86.697 \\ \hline 623\end{array}$	$\begin{array}{r} 1198.8 \\ 309.4 \end{array}$	344 $3442130 \cdot 4$ $49 \cdot 2$	$\begin{array}{lll} 164 & 26 & 24 \cdot 8 \\ 214 & 29 & 29 \cdot 2 \end{array}$	Mesa Fort.	$\begin{aligned} & 14526 \cdot 7 \\ & 18701 \cdot 3 \end{aligned}$	$\begin{aligned} & 4 \cdot 162166 \\ & 4 \cdot 271871 \end{aligned}$
Trout, ${ }^{1} 1910$.	$1130 \cdot 0$	3707	$\begin{array}{rrr}66 & 52 & 16 \cdot 763 \\ 141 & 03 & 42 \cdot 464\end{array}$	$519 \cdot 3$ $517 \cdot 2$	$55 \quad 25 \quad 56 \cdot 9$ 2524757.5	235 72 21 58	Storm....	$4051 \cdot 1$ $8625 \cdot 2$	$\begin{aligned} & 3.607572 \\ & 3.935771 \end{aligned}$
Storm, 1910.	$1115 \cdot 3$	3659	$\begin{array}{r}6651 \\ 141 \\ \hline 168 \\ \hline\end{array}$	77.5 196.2	$\begin{array}{lll}247 & 12 & 01 \cdot 3 \\ 300 & 22 & 04 \cdot 7 \\ 354 & 40 & 09 \cdot 5\end{array}$	$\begin{array}{r} 672635 \cdot 6 \\ 1204132 \cdot 9 \\ 1744123 \cdot 5 \end{array}$	Salmon. Mesa. Fort.	$\begin{aligned} & 12550 \cdot 0 \\ & 18017 \cdot 4 \\ & 10600 \cdot 1 \end{aligned}$	$\begin{aligned} & 4 \cdot 098645 \\ & 4 \cdot 255692 \\ & 4 \cdot 025312 \end{aligned}$
Mesa, 1910.	$976 \cdot 1$	3202	664607.046 1404705.231	$218 \cdot 3$ $64 \cdot 0$	$\begin{array}{lll}10 & 28 & 58 \cdot 5 \\ 51 & 59 & 30 \cdot 1 \\ 84 & 39 & 16 \cdot 8\end{array}$	$\begin{array}{lll} 190 & 25 & 58 \cdot 8 \\ 231 & 37 & 45 \cdot 1 \\ 264 & 21 & 03 \cdot 0 \end{array}$	Trouble. White... Fort....	$\begin{aligned} & 13218 \cdot 9 \\ & 22166 \cdot 9 \\ & 14632 \cdot 1 \end{aligned}$	$\begin{aligned} & 4 \cdot 121194 \\ & 4 \cdot 345704 \\ & 4 \cdot 165308 \end{aligned}$
Fort, 1910	$1044 \cdot 7$	3428	$\begin{array}{r}6645 \\ 1410655.797 \\ \hline\end{array}$	$675 \cdot 2$ $680 \cdot 8$	$\begin{array}{rrrr}313 & 25 & 28 \cdot 0 \\ 342 & 57 & 34 \cdot 9 \\ 12 & 57 & 51 \cdot 5\end{array}$	$\begin{array}{lll} 133 & 40 & 41 \cdot 6 \\ 163 & 10 & 07 \cdot 2 \\ 192 & 54 & 19 \cdot 9 \end{array}$	Trouble Arctic. White.	$16832 \cdot 3$ $34643 \cdot 0$ $12623 \cdot 7$	$\begin{aligned} & 4 \cdot 226143 \\ & 4 \cdot 539615 \\ & 4 \cdot 101185 \end{aligned}$
N. D., 1912.	\ldots	\ldots	$\begin{array}{rrr} 66 & 43 & 29 \cdot 530 \\ 140 & 57 & 46 \cdot 189 \end{array}$	$\begin{aligned} & 914 \cdot 8 \\ & 566 \cdot 0 \end{aligned}$	$\begin{array}{rrr} 8 & 53 & 40 \cdot 5 \\ 171 & 44 & 01 \cdot 7 \\ 238 & 02 & 39 \cdot 2 \end{array}$	$\begin{array}{rrr} 188 & 51 & 37 \cdot 6 \\ 351 & 41 & 58 \cdot 7 \\ 58 & 12 & 28 \cdot 1 \end{array}$	L_{1} of the Boundary (Monument No. 68) M_{1} of the Boundary Mesa.	$\begin{array}{r} 10645 \cdot 6 \\ 11358 \cdot 3 \\ 9240 \cdot 7 \end{array}$	$\begin{aligned} & 4 \cdot 027169 \\ & 4 \cdot 055315 \\ & 3 \cdot 965704 \end{aligned}$
Wart, 1910.	$1034 \cdot 6$	3394	$664240 \cdot 422$ $1410158 \cdot 397$	$\begin{array}{r} 1252 \cdot 2 \\ 716 \cdot 0 \end{array}$	$\begin{array}{rrr} 41 & 38 & 02 \cdot 1 \\ 239 & 33 & 01 \cdot 5 \\ 307 & 31 & 54 \cdot 8 \end{array}$	$\begin{array}{rrr} 221 & 29 & 57 \cdot 6 \\ 59 & 46 & 42 \cdot 1 \\ 127 & 42 & 35 \cdot 3 \end{array}$	White. Mesa. Trouble.	$\begin{array}{r} 9762 \cdot 6 \\ 12673 \cdot 3 \\ 10809.4 \end{array}$	$\begin{aligned} & 3 \cdot 989566 \\ & 4 \cdot 102890 \\ & 4 \cdot 033801 \end{aligned}$
Rover, ${ }^{1} 1910$.	1047 -6	3437	$\begin{array}{r}6642 \\ 140 \quad 54 \\ \hline\end{array}$	$\begin{array}{r} 86 \cdot 7 \\ 493 \cdot 7 \end{array}$	$\begin{array}{rrr}62 & 45 & 19 \cdot 0 \\ 21619 & 04 \cdot 5\end{array}$	$\begin{array}{rrr} 242 & 30 & 32 \cdot 2 \\ 36 & 26 & 02 \cdot 6 \end{array}$	White Mesa.	$13353 \cdot 7$ $9397 \cdot 5$	$\begin{aligned} & 4 \cdot 125601 \\ & 3 \cdot 973013 \end{aligned}$
Trouble, 1910.	$904 \cdot 5$	2967	6639 $140 \quad 50 \quad 20.923$	$229 \cdot 8$ $257 \cdot 1$	$\begin{array}{r}544 \\ 47 \\ 47 \\ \hline 17\end{array}$	$\begin{array}{lll} 185 & 42 & 12 \cdot 4 \\ 226 & 56 & 12 \cdot 6 \end{array}$	Arctic. Circle.	$\begin{aligned} & 21651 \cdot 2 \\ & 22913 \cdot 6 \end{aligned}$	$\begin{aligned} & 4 \cdot 335481 \\ & 4 \cdot 360093 \end{aligned}$
White, 1910.	$980 \cdot 0$	3215	$\begin{array}{rrr} 66 & 38 & 44 \cdot 634 \\ 141 & 10 & 46 \cdot 003 \end{array}$	$\begin{array}{r} 1382 \cdot 6 \\ 565 \cdot 5 \end{array}$	$\begin{array}{rrr} 267 & 09 & 36 \cdot 9 \\ 327 & 59 & 33 \cdot 9 \\ 6 & 29 & 27 \cdot 0 \end{array}$	$\begin{array}{rrr} 87 & 28 & 21 \cdot 6 \\ 148 & 15 & 37 \cdot 2 \\ 186 & 27 & 21 \cdot 2 \end{array}$	Trouble. Arctic. Circle. .	$\begin{aligned} & 15074 \cdot 8 \\ & 24537 \cdot 0 \\ & 14984 \cdot 5 \end{aligned}$	$\begin{aligned} & 4 \cdot 178251 \\ & 4 \cdot 389822 \\ & 4 \cdot 175642 \end{aligned}$
Black River, 1910	958.9	3146	$\begin{array}{rrr} 66 & 37 & 21 \cdot 247 \\ 140 & 57 & 35 \cdot 495 \end{array}$	$\begin{aligned} & 658 \cdot 2 \\ & 436 \cdot 8 \end{aligned}$	$\begin{array}{rrr} 43 & 01 & 37 \cdot 8 \\ 238 & 20 & 05 \cdot 9 \\ 350 & 00 & 46 \cdot 8 \end{array}$	$\begin{array}{rrr} 222 & 47 & 26 \cdot 7 \\ 58 & 26 & 44 \cdot 8 \\ 170 & 04 & 44 \cdot 8 \end{array}$	Circle. . Trouble. Arctic. .	$\begin{array}{r} 16801 \cdot 2 \\ 6275 \cdot 1 \\ 18533 \cdot 2 \end{array}$	$\begin{aligned} & 4 \cdot 225339 \\ & 3 \cdot 797618 \\ & 4 \cdot 267950 \end{aligned}$
Control, ${ }^{1} 1910$	$1073 \cdot 4$	3522	$\begin{array}{rrr}66 & 36 & 32 \cdot 409 \\ 141 & 07 & 44 \cdot 196\end{array}$	$\begin{array}{r} 1003 \cdot 9 \\ 544 \cdot 1 \end{array}$	20 249 24 21	1995858.4 693705.8	Circle. Trouble	$\begin{aligned} & 11487 \cdot 3 \\ & 13702 \cdot 0 \end{aligned}$	$\begin{aligned} & 4 \cdot 060218 \\ & 4 \cdot 136784 \end{aligned}$
Circle, 1910.	$870 \cdot 7$	2857	$\begin{array}{rrr} 66 & 30 & 43 \cdot 997 \\ 141 & 13 & 03 \cdot 059 \end{array}$	$\begin{array}{r} 1362 \cdot 9 \\ 37 \cdot 8 \end{array}$	$\begin{array}{lll} 291 & 53 & 49 \cdot 2 \\ 323 & 43 & 29 \cdot 8 \\ 354 & 01 & 51 \cdot 8 \end{array}$	$\begin{array}{lll} 112 & 11 & 57 \cdot 7 \\ 144 & 00 & 14 \cdot 9 \\ 174 & 04 & 06 \cdot 6 \end{array}$	Arctic. Curve Igloo.	$\begin{aligned} & 15846 \cdot 0 \\ & 23060 \cdot 5 \\ & 17584 \cdot 5 \end{aligned}$	$\begin{aligned} & 4 \cdot 199919 \\ & 4 \cdot 362869 \\ & 4 \cdot 245131 \end{aligned}$
Arctic, 1910	$1273 \cdot 7$	4179	$\begin{array}{rrr} 66 & 27 & 31.972 \\ 140 & 53 & 15.997 \end{array}$	$\begin{aligned} & 990 \cdot 4 \\ & 198 \cdot 1 \end{aligned}$	$\begin{array}{rrr} 5 & 04 & 28 \cdot 8 \\ 48 & 19 & 57 \cdot 6 \end{array}$	$\begin{array}{lll} 185 & 03 & 05 \cdot 9 \\ 228 & 04 & 04 \cdot 5 \end{array}$	Curve. Igloo.	$\begin{aligned} & 12725.6 \\ & 17315.6 \end{aligned}$	$\begin{aligned} & 4 \cdot 104678 \\ & 4 \cdot 238438 \end{aligned}$
Topo, ${ }^{1} 1910$.	$1010 \cdot 4$	3315	$\begin{array}{rrr} 66 & 26 & 27 \cdot 185 \\ 140 & 58 & 50 \cdot 809 \end{array}$	$\begin{aligned} & 842 \cdot 1 \\ & 629 \cdot 7 \end{aligned}$	$\begin{array}{rrr} 42 & 39 & 10 \cdot 0 \\ 344 & 05 & 33 \cdot 5 \end{array}$	$\begin{array}{lll} 222 & 28 & 23 \cdot 8 \\ 164 & 09 & 17 \cdot 4 \end{array}$	Igloo. Curve	$\begin{aligned} & 12945 \cdot 1 \\ & 11092 \cdot 2 \end{aligned}$	$\begin{aligned} & 4 \cdot 112104 \\ & 4 \cdot 045016 \end{aligned}$
Igloo, 1910.	$660 \cdot 7$	2168	$\begin{array}{rrr}66 & 21 & 19.391 \\ 141 & 10 & 36.032\end{array}$	$\begin{aligned} & 600 \cdot 7 \\ & 448 \cdot 1 \end{aligned}$	$325 \quad 3048 \cdot 1$ $4 \quad 15 \quad 16 \cdot 1$	$\begin{array}{lll} 145 & 41 & 45 \cdot 6 \\ 184 & 13 & 55 \cdot 0 \end{array}$	Fishing	$\begin{aligned} & 15846 \cdot 9 \\ & 14929 \cdot 1 \end{aligned}$	$\begin{aligned} & 4 \cdot 199945 \\ & 4 \cdot 174033 \end{aligned}$
Curve, 1910.	$1022 \cdot 9$	3356	$\begin{array}{rrr} 66 & 20 & 42 \cdot 765 \\ 140 & 54 & 46 \cdot 466 \end{array}$	$\begin{array}{r} 1324 \cdot 7 \\ 578 \cdot 3 \end{array}$	$\begin{array}{lll}13 & 36 & 59 \cdot 8\end{array}$ $43 \quad 24 \quad 18 \cdot 7$ $9536 \quad 25 \cdot 8$	$\begin{array}{lll} 193 & 33 & 27 \cdot 9 \\ 223 & 08 & 28 \cdot 1 \\ 275 & 21 & 56 \cdot 0 \end{array}$	Fishing Low Igloo	$\begin{aligned} & 12285 \cdot 5 \\ & 18889 \cdot 8 \\ & 11866 \cdot 7 \end{aligned}$	$\begin{aligned} & 4 \cdot 089393 \\ & 4 \cdot 276227 \\ & 4 \cdot 074329 \end{aligned}$
Prow, ${ }^{1} 1910$.	987-2	3239	$\begin{array}{rrr} 66 & 18 & 30 \cdot 427 \\ 141 & 02 & 23 \cdot 070 \end{array}$	$\begin{aligned} & 942 \cdot 6 \\ & 287 \cdot 4 \end{aligned}$	$\begin{array}{rrr} 37 & 00 & 44 \cdot 4 \\ 340 & 15 & 49 \cdot 2 \end{array}$	$\begin{array}{lll} 216 & 51 & 52 \cdot 0 \\ 160 & 19 & 15 \cdot 3 \end{array}$	Low. Fishing	$\begin{array}{r} 12078 \cdot 6 \\ 8330 \cdot 3 \end{array}$	$\begin{aligned} & 4 \cdot 082017 \\ & 3 \cdot 920660 \end{aligned}$
Fishing, 1910.	$1153 \cdot 7$	3785	$\begin{array}{rrr} 66 & 14 & 17 \cdot 255 \\ 140 & 58 & 37 \cdot 938 \end{array}$	$\begin{aligned} & 534 \cdot 5 \\ & 474 \cdot 1 \end{aligned}$	$\begin{array}{rrr} 357 & 09 & 02 \cdot 4 \\ 28 & 30 & 11 \cdot 9 \\ 79 & 54 & 54 \cdot 7 \end{array}$	$\begin{array}{lll} 177 & 09 & 58 \cdot 4 \\ 208 & 18 & 02 \cdot 8 \\ 259 & 42 & 36 \cdot 4 \end{array}$	Stripe Tom. Low	$\begin{aligned} & 15477 \cdot 8 \\ & 21007 \cdot 2 \\ & 10244 \cdot 3 \end{aligned}$	$\begin{aligned} & 4 \cdot 189709 \\ & 4 \cdot 322369 \\ & 4 \cdot 010483 \end{aligned}$
Low, 1910.	$634 \cdot 6$	2082	$\begin{array}{rrr} 66 & 13 & 18 \cdot 762 \\ 141 & 12 & 04 \cdot 611 \end{array}$	$\begin{array}{r} 581 \cdot 2 \\ 57.6 \end{array}$	$\begin{array}{lll} 321 & 19 & 51 \cdot 9 \\ 359 & 35 & 04 \cdot 9 \end{array}$	$\begin{array}{lll} 141 & 33 & 05 \cdot 8 \\ 179 & 35 & 13 \cdot 7 \end{array}$	Stripe Tom.	$\begin{aligned} & 17451 \cdot 9 \\ & 16667 \cdot 2 \end{aligned}$	$\begin{aligned} & 4 \cdot 241842 \\ & 4 \cdot 221863 \end{aligned}$
N.E., 1912...	\ldots	\ldots	$\begin{array}{rrr} 66 & 08 & 10 \cdot 422 \\ 141 & 03 & 29.457 \end{array}$	$\begin{aligned} & 322 \cdot 8 \\ & 369 \cdot 5 \end{aligned}$	$\begin{array}{r} 65403 \cdot 2 \\ 414841 \cdot 7 \\ 1974614 \cdot 5 \\ 3124304 \cdot 4 \end{array}$	$\begin{array}{rrr} 186 & 52 & 22 \cdot 0 \\ 221 & 40 & 59 \cdot 5 \\ 17 & 50 & 41 \cdot 3 \\ 132 & 48 & 27 \cdot 0 \end{array}$	Blue. Tom Fishing Stripe.	$\begin{array}{r} 11616.5 \\ 9537.3 \\ 11934 \cdot 8 \\ 6032.4 \end{array}$	$\begin{aligned} & 4 \cdot 065075 \\ & 3 \cdot 979425 \\ & 4 \cdot 076816 \\ & 3 \cdot 780488 \end{aligned}$
Stripe, 1910..	$1210 \cdot 7$	3972	$\begin{array}{rrr} 66 & 05 & 58 \cdot 197 \\ 140 & 57 & 36 \cdot 697 \end{array}$	$\begin{array}{r} 1802 \cdot 9 \\ 461 \cdot 0 \end{array}$	$\begin{array}{rr} 3531045 \cdot 4 \\ 74 & 28 \\ 19 \cdot 8 \end{array}$	$\begin{array}{lll} 173 & 13 & 40 \cdot 0 \\ 254 & 15 & 15 \cdot 2 \end{array}$	Kandik. Tom	$\begin{aligned} & 20359 \cdot 3 \\ & 11204 \cdot 0 \end{aligned}$	$\begin{aligned} & 4 \cdot 30876.3 \\ & 4 \cdot 049373 \end{aligned}$
Arch, 1910.	$807 \cdot 1$	2648	$\begin{array}{rrr} 66 & 05 & 19 \cdot 683 \\ 141 & 06 & 35 \cdot 746 \end{array}$	$\begin{aligned} & 609 \cdot 7 \\ & 449 \cdot 3 \end{aligned}$	$\begin{array}{rrr} 65 & 34 & 09 \cdot 1 \\ 164 & 30 & 56 \cdot 8 \\ 259 & 56 & 35 \cdot 2 \end{array}$	$\begin{array}{rrr} 245 & 29 & 17 \cdot 3 \\ 344 & 25 & 56 \cdot 0 \\ 80 & 04 & 48 \cdot 0 \end{array}$	Tom Low. Stripe.	$\begin{array}{r} 4410 \cdot 3 \\ 15401 \cdot 9 \\ 6878 \cdot 2 \end{array}$	$\begin{aligned} & 3 \cdot 644466 \\ & 4 \cdot 187575 \\ & 3 \cdot 837473 \end{aligned}$

${ }^{1}$ No check on this position.

GEOGRAPHIC POSITIONS OF TRIANGULATION STATIONS-Continued.

Station.	Elevat	on.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Logarithm.
Tom, 1910.	Meters.	Feet.	- , "		"	- ' 1		Meters.	
	$855 \cdot 9$	2808	6604 141 14 $1155 \cdot 704$	$641 \cdot 3$ $691 \cdot 8$	$3221634 \cdot 4$ 11 34	$\begin{array}{llll}142 & 32 & 33 \cdot 1 \\ 191 & 31 & 08 \cdot 4\end{array}$	Kandik.	21701.8 13671.6	$\begin{aligned} & 4 \cdot 336496 \\ & 4 \cdot 135818 \end{aligned}$
Blue, 1910.	$1073 \cdot 5$	3522	$14105 \quad 20 \cdot 260$	$255 \cdot 2$	$\begin{array}{rrrr}327 & 01 & 26 \cdot 9 \\ 40 & 45 & 57 \cdot 9\end{array}$	$\begin{array}{llll}147 & 11 & 24 \cdot 9 \\ 220 & 36 & 39 \cdot 0\end{array}$	Kandik	15219.1 $11840 \cdot 0$	$4 \cdot 182389$ $4 \cdot 073351$
					$\begin{array}{r}4045 \\ 131414.9 \\ \hline 11 \cdot 3\end{array}$	$\begin{array}{llll}220 & 36 & 39 \cdot 0 \\ 311 & 35 & 10 \cdot 5\end{array}$	Bench. Tom.	$11840 \cdot 0$ $6648 \cdot 1$	4.073351 3.822699
					218 18	$\begin{array}{r}38 \\ \hline 8\end{array}$	Stripe	$9450 \cdot 8$	3.975467
Bench, 1910...............	$737 \cdot 1$	2418	$\begin{array}{rrr} 65 & 57 & 08 \cdot 266 \\ 141 & 15 & 32 \cdot 075 \end{array}$	$405 \cdot 3$	$\begin{array}{llll}283 & 11 & 34 \cdot 3 \\ 317 & 10 & 25 \cdot 6\end{array}$	$\begin{array}{llll}103 & 30 & 50 \cdot 8 \\ 137 & 33 & 39 \cdot 3\end{array}$	Kandik	16459.4	4.216413
					$\begin{array}{llll}317 & 10 & 25 \cdot 6 \\ 351 & 28 & 50 \cdot 8\end{array}$	$\begin{array}{llll}137 & 33 & 39 \cdot 3 \\ 171 & 31 & 44 \cdot 7\end{array}$	Seal Fire	$28597 \cdot 5$ $16340 \cdot 4$	$4 \cdot 456328$ $4 \cdot 213264$
Kandik, 1910.	$1066 \cdot 2$	3498	$65 \quad 5505 \cdot 539$	$171 \cdot 6$	3490608.5	$169 \quad 10 \quad 06 \cdot 4$	Seal.	$17552 \cdot 9$	$4 \cdot 244348$
			$1405425 \cdot 607$	$324 \cdot 1$	475751.4	$2274129 \cdot 5$	Fire	$18409 \cdot 9$	$4 \cdot 265052$
Cut-in, 1910...............	1131.7	3713	$\begin{array}{llll}65 & 5315.792\end{array}$	$489 \cdot 1$	$\begin{array}{llll}55 & 59 & 23 \cdot 1\end{array}$	$\begin{array}{llll}235 & 43 & 32.9\end{array}$	Fire.	15964.9	$4 \cdot 203166$
			$14055 \quad 00 \cdot 204$	$2 \cdot 6$	$\begin{array}{lll}1145711 \cdot 5 \\ 187 & 20 & 16 \cdot 4\end{array}$	$2943826 \cdot 8$ $7 \quad 2048 \cdot 0$	Bench	$17169 \cdot 2$ 3427.5	4.234749 3.534980
Fire, 1910................. .	$7534 \cdot 0$	2474	$\begin{array}{rrr} 65 & 48 & 26 \cdot 512 \\ 141 & 12 & 21 \cdot 589 \end{array}$	$821 \cdot 2$274	$2855030 \cdot 8$	$1061049 \cdot 9$	Seal.	$17687 \cdot 0$	$4 \cdot 247653$
					$\begin{array}{llll}311 & 39 & 06 \cdot 5\end{array}$	$\begin{array}{llll}132 & 02 & 12 \cdot 0\end{array}$	Scratch	$26005 \cdot 7$	4.415068
					$3501928 \cdot 0$	$1702235 \cdot 0$	Change	$15590 \cdot 2$	$4 \cdot 192852$
Seal, 1910.................. .	1269 - 0	4163	$654549 \cdot 010$	$1518 \cdot 0$	$3492136 \cdot 1$	$1692423 \cdot 1$	Scratch.	12687.4	$4 \cdot 103371$
			$14050 \quad 04 \cdot 919$	$62 \cdot 6$	$54 \quad 07 \quad 34 \cdot 9$	$23350 \cdot 23 \cdot 5$	Change	$17841 \cdot 2$	4-251425
Diablo, 1910............... .	1329.9	4363	$\begin{array}{rrr} 65 & 44 & 25 \cdot 037 \\ 140 & 53 & 27 \cdot 597 \end{array}$	$\begin{aligned} & 775 \cdot 5 \\ & 351 \cdot 6 \end{aligned}$	$562749 \cdot 8$	$23613 \quad 43 \cdot 2$	Change	$14237 \cdot 6$	$4 \cdot 153437$
					$\begin{array}{llll}117 & 3236.4\end{array}$	$\begin{array}{lllll}297 & 15 & 22 \cdot 3\end{array}$	Fire	$16252 \cdot 8$	$4 \cdot 210929$
					$\begin{array}{lllllllllllllll}224 & 45 & 18 \cdot 8\end{array}$	44 48 153 $23 \cdot 6$	Seal	$3664 \cdot 4$	$3 \cdot 564001$
					$3332544 \cdot 7$	$\begin{array}{llll}153 & 31 & 36 \cdot 4\end{array}$	Scratch	11029.9	4.042572
Trimmed, 1910...........	$797 \cdot 8$	2618	$654241 \cdot 293$1410147	1279.0	$501206 \cdot 9$	$2300526 \cdot 9$	Change	7298.0	$3 \cdot 863203$
				479.6	$\begin{array}{llll}142 & 36 & 08 \cdot 3\end{array}$	$\begin{array}{llll}322 & 26 & 21 \cdot 1\end{array}$	Fire.	$13474 \cdot 3$	$4 \cdot 129507$
					$\begin{array}{llll}300 & 38 & 34 \cdot 7\end{array}$	$\begin{array}{llll}120 & 51 & 52 \cdot 8\end{array}$	Scratch	$13016 \cdot 1$	$4 \cdot 114482$
					$3575107 \cdot 2$	$1775140 \cdot 0$	Union	12323.0	$4 \cdot 090716$
Change, 1910.	$905 \cdot 7$	2972	$65 \quad 40 \quad 10 \cdot 303$	$319 \cdot 1$	$\begin{array}{llll}276 & 33 & 02.2\end{array}$	$965300 \cdot 1$	Scratch.	16919.8	$4 \cdot 228396$
			1410856.499	721.9	$\begin{array}{llll}321 & 26 & 15 \cdot 0 \\ 343 & 44 & 41 \cdot 0\end{array}$	$\begin{array}{lll}141 & 33 & 27 \cdot 6 \\ 163 & 48 & 49 \cdot 2\end{array}$	Union	$9759 \cdot 5$ $12490 \cdot 6$	$\begin{aligned} & 3 \cdot 989427 \\ & 4 \cdot 096582 \end{aligned}$
Scratch, 1910..............	$1075 \cdot 7$	3529	$65 \quad 3906 \cdot 409$	198.5	$348 \quad 2047 \cdot 1$	$\begin{array}{llll}168 & 23 & 17 \cdot 1\end{array}$	Comet	$10459 \cdot 9$	$4 \cdot 019529$
			$1404701 \cdot 688$	$21 \cdot 6$	${ }_{2}^{2} 3234 \cdot 4$	$1823129 \cdot 6$	Lost.	$20686 \cdot 7$	$4 \cdot 315692$
					$622026 \cdot 5$	$2420741 \cdot 5$	Union	$12146 \cdot 6$	$4 \cdot 084455$
Union, 1910...............	$1294 \cdot 5$	4247	$\begin{array}{llll}65 & 36 & 03 \cdot 719\end{array}$	$115 \cdot 2$	$2892833 \cdot 8$	$1094348 \cdot 5$	Comet.	$13670 \cdot 6$	$4 \cdot 135787$
			$1410101 \cdot 565$	$20 \cdot 1$	$3048 \quad 24 \cdot 9$	$21045 \quad 20 \cdot 6$	Halley	$5070 \cdot 0$	3.705005
Halley, 1910................	1082 -4	3551	653343.091	$1334 \cdot 7$	$3102136 \cdot 7$	$\begin{array}{llll}130 & 36 & 20.4\end{array}$	Lost.	$16407 \cdot 6$	$4 \cdot 215046$
			$14104 \quad 23.965$	$307 \cdot 5$	$\begin{array}{llll}353 & 08 & 58.3\end{array}$	$\begin{array}{llll}173 & 10 & 34 \cdot 0\end{array}$	Yellow	$11358 \cdot 2$	4-055308
Comet, 1910.	$1096 \cdot 1$	3596	$\begin{array}{llll}65 & 33 \quad 35 \cdot 640\end{array}$	1103.9	$161520 \cdot 5$	$\begin{array}{lllll}196 & 11 & 45 \cdot 8\end{array}$	Lost.	10853 -8	$4 \cdot 035580$
			$14044 \quad 17 \cdot 007$	$218 \cdot 2$	$\begin{array}{llll}52 & 11 & 06.9\end{array}$	$\begin{array}{lllllllllllllllll}231 & 54 & 24 \cdot 3\end{array}$	Yellow	$17961 \cdot 0$	$4 \cdot 254331$
					$910023 \cdot 5$	$2704204 \cdot 7$	Halley	$15486 \cdot 3$	4-189947
Lost, 1910.	1279 -5	4198	$\begin{array}{lll}65 & 27 & 59 \cdot 174\end{array}$	$1832 \cdot 8$	$\begin{array}{llll}15 & 19 & 53.0\end{array}$	$\begin{array}{llll}195 & 14 & 58.6\end{array}$	Lime.	$15848 \cdot 3$	$4 \cdot 199984$
			$140 \quad 48 \quad 12.969$	$167 \cdot 0$	$41131356 \cdot 3$ 8654	$\begin{array}{lll}221 & 00 & 15 \cdot 2 \\ 266 & 40 & 52 \cdot 5\end{array}$	Casca	$17719 \cdot 3$ $11166 \cdot 7$	$4 \cdot 248447$ 4.047923
Yellow, 1910...............	$816 \cdot 7$	2680	$65 \quad 27 \quad 38.989$	$1207 \cdot 6$	$3342456 \cdot 5$	$\begin{array}{llll}154 & 33 & 09.4\end{array}$	Lime.	$16246 \cdot 8$	$4 \cdot 210767$
			$1410238 \cdot 768$	$499 \cdot 3$	$20940 \cdot 1$	$1820906 \cdot 3$	Casca.	$12732 \cdot 8$	4-104924
N. G., ${ }^{1} 1912$.		\ldots	$65 \quad 2637 \cdot 553$	$1163 \cdot 0$	285150	2084856	N. F.	$5125 \cdot 5$	$3 \cdot 70974$
			$14056 \quad 23 \cdot 592$	$304 \cdot 0$	1113212	2912631	Yellow	$5194 \cdot 5$	$3 \cdot 71554$
N. F., 1912.			$\begin{array}{rrr}65 & 24 & 12 \cdot 590 \\ 140 & 59 & 35.295\end{array}$	389.9	$\begin{array}{rrrr}24 & 15 & 55 \cdot 3 \\ 159 & 43 & 03 \cdot 1\end{array}$	$\begin{array}{lll}204 & 12 & 34 \cdot 8 \\ 3 & 39 & 40 \\ 16.2\end{array}$	Casca.		3.841549 3.833553
			14059 35-295	$455 \cdot 6$	159 23143 19	$\begin{array}{rrrr}339 & 40 & 16 \cdot 2 \\ 51 & 30 & 06 \cdot 7\end{array}$	Yellow	6816.4 11252.7	$3 \cdot 833553$ $4 \cdot 051256$
					330414808.2	$1504634 \cdot 3$	Lime	9479.6	3.976792
Peak, northwest of F_{1} Ridge. 1909.		\ldots	$\begin{array}{lll}65 & 22 & 04 \cdot 61\end{array}$	$142 \cdot 8$	3252916	1453814	View Northeast.	13575.9	$4 \cdot 132770$
			$1410454 \cdot 26$	$701 \cdot 4$	114704	1914433	Nation	$10507 \cdot 4$	$4 \cdot 021497$
F1 Ridge, 1909............ .	\ldots	\ldots	$65 \quad 2135 \cdot 73$	$1106 \cdot 7$	3411953	1612357	View Northeast......	$10872 \cdot 4$	$4 \cdot 036327$
			14059 29.63	$383 \cdot 1$		1821516	E_{1} of the Boundary (Monument No. 99)	9979.5	$3 \cdot 999107$
					340626	2135901	Nation.	$11335 \cdot 5$	$4 \cdot 054441$
Dark peak, northeast of View Northeast, 1909.	.	\ldots	$65 \quad 21 \quad 12.73$	$394 \cdot 3$	322014	2021209	View Northeast.	$11340 \cdot 7$	$4 \cdot 054639$
			1404714.02	$181 \cdot 3$	612902	2411028	Nation	$18091 \cdot 7$	$4 \cdot 257479$
Casca, 1910............... .	$487 \cdot 5$	4880	$65 \quad 2048 \cdot 183$	$1492 \cdot 4$	$323 \begin{array}{llll}38 & 36 \cdot 0\end{array}$	$1440605 \cdot 3$	View Northeast......	$10908 \cdot 7$	$4 \cdot 037773$
			$14103 \quad 15 \cdot 888$	$205 \cdot 5$	$232222 \cdot 0$	$2031822 \cdot 3$	Nation.	$8625 \cdot 6$	3.935789

[^28]GEOGRAPHIC POSITIONS OF TRIANGULATION STATIONS-Continued.

Station.	Eleva	ion.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Logarithm.
Peak, south of west of F_{1} Ridge, 1909.	Meters.	Feet.	- , "	$1486 \cdot 7$	- ,	- ' 1		Meters.	
			$\begin{array}{llll}65 & 20 & 47.96\end{array}$		3235832	$\begin{array}{llll}144 & 06 & 01\end{array}$	View Northeast.	$10900 \cdot 3$	4.037439
			$1410315 \cdot 52$	$200 \cdot 8$	$\begin{array}{llll}16 & 40 \\ 23 & 25 & 16\end{array}$	$\begin{array}{llll}196 & 35 & 35 \\ 203 & 21 & 12\end{array}$	Mush.	14027.4 8621.1	$\begin{aligned} & 4 \cdot 146978 \\ & 3.935562 \end{aligned}$
Reddish peak, 4 miles north of View Northeast, 1909.		\ldots	$\begin{array}{rrr}65 & 20 & 18.48 \\ 140 & 53 & 23.02\end{array}$	$572 \cdot 4$	$\begin{array}{llll}9 & 09 & 54\end{array}$	1890824	View Northeast.	$8011 \cdot 8$	3.903728
				297.9	575202	2373903	Nation.	13121.0	$4 \cdot 117967$
High Rocky Peak, 1909.... .	\ldots	- . . .	$\begin{array}{rrrr}65 & 20 & 11 \cdot 15 \\ 140 & 51 & 42 \cdot 39\end{array}$	$345 \cdot 4$	183435	1983134	View Northeast.	$8103 \cdot 8$	$3 \cdot 908691$
				$548 \cdot 6$	612853	2411423	Nation.	$14130 \cdot 8$	4-150168
Lime, 1910.	$1417 \cdot 6$	4651	651914053	$1412 \cdot 3$	$90324 \cdot 5$		View Northeast.	$6978 \cdot 1$	3.843737
				$475 \cdot 3$	$612401 \cdot 0$		Nation.	$12453 \cdot 0$	$4 \cdot 095274$
					$1043431 \cdot 6$	$2842545 \cdot 2$	Casca.	$7740 \cdot 6$	3.888775
$\begin{aligned} & \text { Craggy Peak, northeast of } \mathrm{E}_{1} \\ & \text { 1909. } \end{aligned}$		\ldots	$\begin{array}{rrl} 65 \quad 17 & 42 \cdot 38 \\ 140 & 55 & 33 \cdot 28 \end{array}$	1312.6431.3	3522005	1722034	View Northeast.	$3102 \cdot 7$	3.491745
					513601	2313158	E_{1} of the Boundary.. (Monument No. 99.	$4414 \cdot 9$	3-644919
					770842	2565742	Nation.	$9663 \cdot 9$	3.985153
Nation, 1909	1299.9	4269	$\begin{array}{rrr} 65 & 16 & 32 \cdot 477 \\ 141 & 07 & 39 \cdot 722 \end{array}$	$1005 \cdot 9$	$\begin{array}{lllll}27511 & 11 & 20 \cdot 7\end{array}$	952249.5	View Northeast.	9879.0	3.994711
				$515 \cdot 2$	$30438 \quad 28 \cdot 7$	$124 \quad 50 \quad 37: 3$	Grub.	$12678 \cdot 3$	$4 \cdot 103060$
					$6 \quad 0614 \cdot 0$	$1860532 \cdot 7$	Mush	$5559 \cdot 2$	$3 \cdot 745010$
E1 Mountain Summit, 1909.	\ldots	651628.06$1410022 \cdot 18$	$\begin{aligned} & 869 \cdot 1 \\ & 287 \cdot 7 \end{aligned}$	$\begin{array}{lll}280 & 29 & 07\end{array}$	1003359	View Northeast.	$4232 \cdot 6$	$3 \cdot 626604$
					3261216	1461747	Grub.	$8525 \cdot 2$	3.930706
					492232	$\begin{array}{llll}229 & 1514\end{array}$	Mush	$8269 \cdot 6$	3.917486
					912607	2711929	Nation	$5676 \cdot 6$	$3 \cdot 754090$
View Northeast, 1909.......	1703.4	5588	$\begin{array}{rrr} 65 & 16 & 03 \cdot 100 \\ 140 & 55 & 01 \cdot 381 \end{array}$	$\begin{aligned} & 96 \cdot 0 \\ & 17 \cdot 9 \end{aligned}$	$3544955 \cdot 4$	$174 \quad 5035 \cdot 3$	Grub	$6341 \cdot 0$	$3 \cdot 802160$
					$103914 \cdot 7$	$1903640 \cdot 6$	Back	11955.4	$4 \cdot 077564$
					661403.4	2460153.4	Mush.	$11412 \cdot 8$	$4 \cdot 057392$
					$945502 \cdot 8$	$2745031 \cdot 5$	E_{1} of the Boundary (Monument No. 99)	$3888 \cdot 0$	3-589731
View Southwest, 1909.......	\ldots	$651537 \cdot 82$$1405651 \cdot 35$	$\begin{array}{r} 1171 \cdot 4 \\ 666 \cdot 4 \end{array}$	2411335	611514	View Northeast.	$1627 \cdot 6$	$3 \cdot 211547$
					3400651	1600910	Grub......... .	$5882 \cdot 3$	$3 \cdot 769546$
					40328	1840234	Back	10994.5	$4 \cdot 041174$
					161911	1961617	Slide	8847.6	3.946827
					272445	2071757	Pack	12699.0	$4 \cdot 103770$
					670200 101	2465130	Mush	9792.3	3.990886
					$\begin{array}{ll}1012742 \\ 114 & 29\end{array}$	2811753	Nation..........	$8580 \cdot 3$	3.933504
					1142931	2942639	E_{1} of the Boundary. (Monument No. 99)	$2689 \cdot 2$	3.429628
Mountain, Southwest of E_{1} of the Boundary, 1909.	$\ldots .$.	\ldots	$\begin{array}{rrr} 65 & 15 & 24 \cdot 54 \\ 141 & 02 & 36 \cdot 24 \end{array}$	$\begin{aligned} & 760 \cdot 1 \\ & 470 \cdot 5 \end{aligned}$	2583011	$\begin{array}{ll}78 & 37 \\ 04\end{array}$	View Northeast	$6022 \cdot 0$	3-779740
					30815159 50	1282302	Grub.	$8258 \cdot 7$	3.916912
					525836	2325320	Mush	$5679 \cdot 7$	$3 \cdot 754324$
					1180933	2980457	Nation	$4464 \cdot 5$	$3 \cdot 649776$
Shed Mountain, 1909......	$\begin{array}{llll}65 & 15 & 05 & 895\end{array}$	$182 \cdot 6$	$2963907 \cdot 6$	$1164937 \cdot 9$	Grub.	$10098 \cdot 2$	$4 \cdot 004245$
			$1410551 \cdot 621$	$670 \cdot 1$	35 152	$2150027 \cdot 6$	Mush	$3475 \cdot 6$	3.541024
					$1522403 \cdot 1$	$3322224 \cdot 9$	Nation	$3026 \cdot 3$	3.480918
Mush, 1909................	$1142 \cdot 8$	3749	$65 \quad 13$ 34.003	$1053 \cdot 2$	$\begin{array}{ll}278 & 39 \\ 02 \cdot 6\end{array}$	$985152 \cdot 3$	Grub	11149.0	4.047236
			$141 \quad 08 \quad 25 \cdot 214$	$327 \cdot 7$	$305 \quad 2349 \cdot 3$	$1253125 \cdot 7$	Slide.	8028.2	3.904619
					31045 336	$\begin{array}{llll}130 & 55 & 26 \cdot 5 \\ 156 & 50 & 43 \cdot 1\end{array}$	Back	$10905 \cdot 6$ 8098.3	4.037649 3.908392
Jay, 1909.	\ldots	$651304 \cdot 017$.	$124 \cdot 4$	$\begin{array}{lll}5 & 39 & 49 \cdot 6\end{array}$	$\begin{array}{llllllllllll}185 & 39 & 04 \cdot 6\end{array}$	Pack.	$6547 \cdot 4$	$3 \cdot 816067$
			$14103 \quad 30 \cdot 551$	$397 \cdot 2$	$1532500 \cdot 3$		Nation.	7221.7	3.858638
					$2045514 \cdot 6$	$245825 \cdot 7$	E_{1} of the Boundary (Monument No. 99)	$6482 \cdot 1$	3.811714
					$2295638 \cdot 0$	$500420 \cdot 3$	View Northeast......	$8630 \cdot 3$	3.936028
					$2760159 \cdot 2$	$961021 \cdot 3$	Grub	$7231 \cdot 2$	3.859208
					$\begin{array}{llll}323 & 59 & 19.4\end{array}$	$\begin{array}{llll}144 & 02 & 28 \cdot 3\end{array}$	Slide.	$4608 \cdot 2$	3.663527
					$3243017 \cdot 6$	$14435 \quad 25 \cdot 7$	Back	$7615 \cdot 5$	3.881700
Grub, 1909................. .	$1035 \cdot 1$	3396	$65 \quad 12 \cdot 39 \cdot 196$	$1214 \cdot 0$	$270701 \cdot 9$	$2070348 \cdot 0$	Back	$6104 \cdot 5$	3.785653
			$14054 \quad 17 \cdot 450$	226.9	$563747 \cdot 4$	$2363234 \cdot 3$	Slide.	$5375 \cdot 2$	$3 \cdot 730392$
Highest pinnacle west of Grub, 1909.		\ldots	$65 \quad 1232 \cdot 51$	$1006 \cdot 9$	2670758	871251	Grub.	$4201 \cdot 3$	3.623380
			$1415940 \cdot 18$	$522 \cdot 4$	55921	1855901	Slide...	2767.9	3.442158
					332215 10593	2131801	Pack....	$6630 \cdot 5$	$3 \cdot 821545$
					1053937	2853140	Mush	7085-3	$3 \cdot 850356$
Reddish peak, east-southeast of E_{1} of the Boundary, 1909.	\ldots	\ldots	$\begin{array}{rrrr}65 & 12 & 30 \cdot 57\end{array}$	$946 \cdot 8$	$\begin{array}{lll}96 & 49 & 12\end{array}$	2762936	Mush.	$16947 \cdot 2$	$4 \cdot 229097$
			$1404650 \cdot 20$	6527	1145630	2943735	Nation...........	$17872 \cdot 6$	$4 \cdot 252187$
					1240440	3035243	E_{1} of the Boundary (Monument No. 99)	12369.5	$4 \cdot 092353$
					1355730	3155004	View Northeast......	$9166 \cdot 5$	3.962204

[^29]23565-101 $\frac{1}{2}$

GEOGRAPHIC POSITIONS OF TRIANGULATION STATIONS-Continued.

Station.	Elevati		Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Logarithm.
East, 1909......	Meters.$963 \cdot 8$	Feet. 3162	$\begin{array}{rcc} \circ & \prime & \prime \prime \\ & & \\ 65 & 12 & 01 \cdot 945 \\ 140 & 58 & 40.055 \end{array}$	$\begin{array}{r} 60 \cdot 2 \\ 521 \cdot 0 \end{array}$	- ' ${ }^{\text {c }}$	- ' 1		Meters.	
					$304031 \cdot 9$	$2103917 \cdot 1$	Slide.	2099 -9	$3 \cdot 322197$
					$\begin{array}{rrr}71 & 40 & 08 \cdot 0 \\ 200 & 47 & 42 \cdot 2\end{array}$	251 20 20 51	Talus.	$1056 \cdot 7$ 7991.0	3.023967 3.902600
					2511756.9	$712155 \cdot 3$	Grub. .	$3604 \cdot 6$	3.556852
					$1722536 \cdot 0$	$3522423 \cdot 3$	E^{1}. of the Boundary (Monument No. 99)	7868-6	$3 \cdot 895898$
Talus, 1909.	$960 \cdot 5$	3151	6514014959	$\begin{array}{r} 1586 \cdot 1 \\ 743 \cdot 7 \end{array}$	$1154755 \cdot 6$	2954014.4	Mush.	$7332 \cdot 4$	3.865244
					$1452755 \cdot 7$	$3252055 \cdot 7$	Nation...	$10582 \cdot 3$	4.024582
					$2061104 \cdot 4$	$261533 \cdot 0$	View Northeast.	$8696 \cdot 5$	3.939346
West, 1909.	$1044 \cdot 1$	3425	$\begin{array}{rrr} 65 & 11 & 37 \cdot 218 \\ 141 & 01 & 14 \cdot 068 \end{array}$	$\begin{array}{r} 1152 \cdot 8 \\ 183 \cdot 0 \end{array}$	$\begin{array}{llll}250 & 26 & 23 \cdot 7\end{array}$	$703242 \cdot 0$	Grub.	$5748 \cdot 4$	3.759547
					$1225309 \cdot 8$	$3024638 \cdot 4$	Mush	$6671 \cdot 4$	$3 \cdot 824217$
					$1512003 \cdot 7$	$3311413 \cdot 5$	Nation.	$10427 \cdot 0$	$4 \cdot 018160$
					$\begin{array}{llll}210 & 24 & 26 \cdot 7 \\ 246 & 34 & 16 \cdot 3\end{array}$	$\begin{array}{llll}30 & 30 & 05 \cdot 1 \\ 66 & 35 & 26 \cdot 1\end{array}$	View Northeast.	9552.9 1090.2	3.980133 3.037500
					249 $1930 \cdot 2$	$690600 \cdot 1$	East.	$2144 \cdot 8$	$3 \cdot 331394$
Slide, 1909.....	$1335 \cdot 8$	4382	$\begin{array}{rrr} 65 & 11 & 03 \cdot 625 \\ 141 & 00 & 02 \cdot 372 \end{array}$	112.330.9	$325 \quad 2053 \cdot 4$	$145 \quad 2252 \cdot 6$	Back.	$3007 \cdot 8$	$3 \cdot 478255$
					50 180 19	$\begin{array}{lllll}230 & 15 & 59.4\end{array}$	Pack	4362 - 5	3-639738
					$180 \quad 11 \quad 00 \cdot 9$	$01103 \cdot 1$	E_{1} of the Boundary (Monument No. 99)	$9606 \cdot 1$	3.982548
Back, 1909.	$1575 \cdot 6$	5169	$650943 \cdot 720$	$1354 \cdot 1$	$33046 \quad 21 \cdot 9$	$\begin{array}{llll}150 & 51 & 01 \cdot 7\end{array}$	Barney	$8247 \cdot 4$	3.916319
			$1405751 \cdot 073$	6653	$35 \quad 58 \quad 34 \cdot 7$	$2155100 \cdot 8$	Hi -yu.	$11127 \cdot 0$	4.046378
Pack, 1909.	1259 - 4	4132	$650933 \cdot 649$	$1042 \cdot 2$	$2662546 \cdot 3$	863139.4	Back.	5077-8	$3 \cdot 705674$
			$14104 \quad 20 \cdot 154$	$262 \cdot 5$	$92900 \cdot 0$	$1892719 \cdot 1$	Hi -yu.	$8820 \cdot 1$	3.945474
Sharp Peak, east of Back, 1909.	650928.481405534.83	$\begin{aligned} & 882 \cdot 1 \\ & 453 \cdot 7 \end{aligned}$	1045437	$\begin{array}{llll}284 & 52 & 33\end{array}$	Back.	$1458 \cdot 7$	3.163967
					1442552	$\begin{array}{llll}324 & 14 & 54\end{array}$	Nation.	16162 -7	4-208515
					1644041	3443641	E_{1} of the Boundary (Monument No. 99)	$13017 \cdot 6$	$4 \cdot 114532$
					1820201	20232	View Northeast......	12229.9	$4 \cdot 087422$
					1893957	94108	Grub	$5992 \cdot 1$	$3 \cdot 777580$
Game, 1909.........	$1373 \cdot 8$	4507	$\begin{array}{rrr} 65 & 07 & 28 \cdot 062 \\ 140 & 57 & 32 \cdot 741 \end{array}$	$\begin{aligned} & 869 \cdot 2 \\ & 427 \cdot 1 \end{aligned}$	$3082046 \cdot 4$	$\begin{array}{lll}128 & 25 & 09.6\end{array}$	Barney	4829.5	3.683900
					$544021 \cdot 2$	$2343230 \cdot 8$	Hi -yu.	$8305 \cdot 4$	$3 \cdot 919361$
					$1261613 \cdot 5$	$3061003 \cdot 9$	Pack.	$6582 \cdot 8$	$3 \cdot 818410$
					$1764449 \cdot 9$	$35644 \quad 33 \cdot 3$	Back	$4208 \cdot 3$	$3 \cdot 624105$
Barney, 1909.........	$1256 \cdot 6$	4123	$65 \quad 05 \quad 51 \cdot 243$	$1587 \cdot 2$	033 $39 \cdot 3$	$\begin{array}{llll}180 & 33 & 32 \cdot 5\end{array}$	Castle.	$10135 \cdot 5$	$4 \cdot 005847$
			$1405242 \cdot 656$	$556 \cdot 8$	$541020 \cdot 8$	$\begin{array}{llllllllllll}234 & 03 & 18 \cdot 5\end{array}$	Squaw	7511.0	$3 \cdot 875700$
					$80 \quad 2210 \cdot 8$	$2600957 \cdot 3$	Hi-yu.	$10717 \cdot 0$	$4 \cdot 030075$
Hi-yu, 1909.	$1476 \cdot 7$	4845	$\begin{array}{lll}65 & 04 & 52 \cdot 749\end{array}$	$1633 \cdot 8$	$29958 \quad 54 \cdot 8$	1200405.9	Squaw	$5178 \cdot 4$	$3 \cdot 714194$
			$1410611 \cdot 383$	$148 \cdot 7$	$3512002 \cdot 3$	$17121 \quad 07 \cdot 4$	Red.	$6242 \cdot 3$	$3 \cdot 795346$
Skook, 1909.	$1549 \cdot 2$	5083	$\begin{array}{rrr} 65 & 04 & 05 \cdot 571 \\ 141 & 04 & 00 \cdot 418 \end{array}$	$\begin{array}{r} 172.6 \\ 5.5 \end{array}$	$91959 \cdot 2$	$1891905 \cdot 5$	Red.	4773.1	3.678802
					$271248 \cdot 1$	$20706 \quad 24 \cdot 4$	Crow	$1214 \cdot 1$	$3 \cdot 084244$
					$\begin{array}{llll}130 & 30 & 17 \cdot 5\end{array}$	$\begin{array}{llll}310 & 28 & 18 \cdot 7\end{array}$	Hi -yu	$2250 \cdot 4$	$3 \cdot 352257$
					$\begin{array}{lllll}178 & 33 & 01 \cdot 7\end{array}$	$\begin{array}{llll}358 & 32 & 43 \cdot 8\end{array}$	Pack.	10164 - 4	$4 \cdot 007080$
						$\begin{array}{r}24 \\ 45 \\ \hline 125\end{array}$	Back	$11528 \cdot 6$	4.061778
					$\begin{array}{llll}307 & 57 & 22.9\end{array}$	$1280730 \cdot 4$	Castle	$11136 \cdot 0$	$4 \cdot 046730$
					$\begin{array}{llll}358 & 19 & 02 \cdot 2\end{array}$	$\begin{array}{llll}178 & 19 & 28 \cdot 3\end{array}$	Chief	12937.4	$4 \cdot 111848$
Squaw, 1909........	$1438 \cdot 8$	4720	$6503 \quad 29 \cdot 086$	$900 \cdot 9$	$3133905 \cdot 1$	$1334600 \cdot 4$	Castle.	$8295 \cdot 6$	3.91884
			$14100 \quad 28 \cdot 366$	$370 \cdot 9$	$444639 \cdot 7$	$2244233 \cdot 8$	Red.	$5040 \cdot 4$	$3 \cdot 70246$
Red, 1909.................	901.8	2959	$\begin{array}{rrrr}65 & 01 & 33.493 \\ 141 & 04 & 59.541\end{array}$	1037.4	$\begin{array}{lll}351 & 59 & 44 \cdot 1 \\ 38 & 06 & 55 \cdot 2\end{array}$	$\begin{array}{llll}172 & 01 & 03.9\end{array}$	Chief.	8302.5	3.919210 3.888637
			$1410459 \cdot 541$	779.5	$38 \quad 0655 \cdot 2$	$2180125 \cdot 2$	Crow	$7738 \cdot 1$	3-888637
Cone-shaped Peak, 1909.....	\ldots	\ldots	$\begin{array}{rrrr}65 & 00 & 48 \cdot 31 \\ 140 & 59 & 23 \cdot 88\end{array}$	$\begin{array}{r} 1496 \cdot 3 \\ 312 \cdot 7 \end{array}$	$\begin{array}{llll}278 & 15 & 29\end{array}$	982126	Castle.	5211.4	$3 \cdot 716958$
					21048	1821020	Hug.	$10856 \cdot 8$	4.035703
					25 62 2851	$\begin{array}{ll}205 & 2507\end{array}$	Chief	$7555 \cdot 8$	3.878281
					625938 1074159	242 287 86	Crow	10303.4 4612.9	4.012980 3.663978
Pinnacle, 1909..............	$830 \cdot 5$	2725	$650044 \cdot 186$	$1368 \cdot 6$	$1521616 \cdot 5$	$\begin{array}{llll}332 & 11 & 29.0\end{array}$	Skook.	$7048 \cdot 1$	$3 \cdot 848071$
			1405949.432	647-5	02442.4	$\begin{array}{llll}180 & 24 & 37 \cdot 1\end{array}$	Hug.	10721.4	4.030253
					$1233203 \cdot 0$	$203 \quad 2841 \cdot 8$	Chief	$7300 \cdot 6$	$3 \cdot 863359$
					$1103048 \cdot 2$	$290 \quad 34 \quad 07 \cdot 1$	Red	$4338 \cdot 7$	3.637358
Castle, 1909.	1127.9	3701	$650024 \cdot 002$	$743 \cdot 4$	$285833 \cdot 2$	$2085208 \cdot 0$	Hug.	$11534 \cdot 7$	4.062005
			$1405250 \cdot 229$	658.0	$541542 \cdot 9$	2340601.8	Chief	10371.5	$4 \cdot 015840$
					10247 23-2	$\begin{array}{llll}282 & 36 & 22 \cdot 1\end{array}$	Red.	9791.2	$3 \cdot 990835$
Crow, 1909.	$859 \cdot 8$	2821	$64 \quad 58 \quad 16 \cdot 794$	$4 \quad 520 \cdot 1$	$28941 \quad 18 \cdot 5$	1094808.2	Chief.	$6304 \cdot 4$	3.799647
			$1411103 \cdot 622$	47-5	r $3045746 \cdot 0$ $34838 \cdot 3$	$\begin{array}{llll}125 & 07 & 51 \cdot 6 \\ 183 & 48 & 08 \cdot 7\end{array}$	Hug..	$10720 \cdot 6$ 6469.0	$4 \cdot 030220$ $3 \cdot 810835$
Chief, 1909	$1248 \cdot 0$	4094	645708.023	$348 \cdot 5$	32446 31-0	$1444946 \cdot 8$	Hug.	4927.2	$3 \cdot 692602$
			$1410331 \cdot 477$	$7 \quad 413 \cdot 3$	$55 \quad 5310 \cdot 8$	$\begin{array}{llllllllll}235 & 45 & 51 \cdot 6\end{array}$	Strat	$7699 \cdot 2$	$3 \cdot 886447$

GEOGRAPHIC POSITIONS OF TRIANGULATION STATIONS-Continued.

[^30]GEOGRAPHIC POSITIONS OF TRIANGULATION STATIONS—Continued.

Station.	Elevat	on.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Logarithm.
Yukon River, West Base,1907.	Meters.$274 \cdot 4$	Feet.900	$\begin{array}{rcc\|} \circ & \prime & \prime \prime \\ 64 & 41 & 01 \cdot 927 \\ 141 & 01 & 38 \cdot 113 \end{array}$	$\begin{array}{r} 59.7 \\ 505.4 \end{array}$	$\begin{array}{lll} 137 & 51 & 20 \cdot 4 \\ 241 & 44 & 04 \cdot 3 \\ 285 & 27 & 31 \cdot 1 \end{array}$	$\begin{array}{r} 3174856 \cdot 4 \\ 614619 \cdot 1 \\ 1052859 \cdot 8 \end{array}$	Yukon Knoll. Crossing	Meters.$\begin{aligned} & 3145 \cdot 0 \\ & 2243 \cdot 3 \\ & 1349 \cdot 9 \end{aligned}$	$\begin{aligned} & 3 \cdot 497623 \\ & 3 \cdot 350882 \\ & 3 \cdot 130309 \end{aligned}$
Boundary, Lat., Long., and Az. Station, 1906.		\ldots	644051.420 1410000.405	1592.4 5.4	$90.0000 \cdot 0$	$2700000 \cdot 0$	Boundary Astro. Sta.	$5 \cdot 37$	0.729974
Bald of the Boundary, 1907.	\ldots	\ldots	$\begin{array}{rrr}64 & 40 & 51 \cdot 420 \\ 141 & 00 & 00 \cdot 000\end{array}$	1592.4 0.0					
Crossing, 1907............Yukon River, East Base, 1907	$268 \cdot 0$$283 \cdot 8$	879$931 \cdot 2$	$\begin{array}{rrr}64 & 40 & 50 \cdot 300 \\ 141 & 00 & 00 \cdot 000\end{array}$	$1557 \cdot 7$ $0 \cdot 0$	$1800000 \cdot 0$	$00000 \cdot 0$	Bald.	$34 \cdot 7$	$1 \cdot 540329$
			$644049 \cdot 017$	$1518 \cdot 0$	1052909.7	$285 \quad 2731 \cdot 2$	Yukon River, West Base. .	$1498 \cdot 7$	3-175728
			$1405949 \cdot 185$	$652 \cdot 3$	$\begin{array}{lll}127 & 33 & 51.9 \\ 200 & 00 & 03.3\end{array}$	$\begin{array}{cc}337 & 29 \\ 29 & 49.4 \\ 35.6\end{array}$	Yukon.	$4483 \cdot 0$	3.651568
Loop, 1907.	$739 \cdot 8$	2427	643916.4711405610.984	$510 \cdot 1$$145 \cdot 8$	$\begin{array}{lll} 133 & 45 & 02 \cdot 0 \\ 151 & 23 & 49 \cdot 6 \end{array}$	$\begin{array}{lll}313 & 41 & 35 \cdot 0 \\ 331 & 21 & 03 \cdot 7\end{array}$	Crossing Knoll	$\begin{aligned} & 4204 \cdot 3 \\ & 4930 \cdot 2 \end{aligned}$	$\begin{aligned} & 3.623694 \\ & 3.692866 \end{aligned}$
Plateau, 1907...............	$930 \cdot 4$	3052	$\begin{array}{rrr} 64 & 38 & 57 \cdot 789 \\ 141 & 05 & 54 \cdot 560 \end{array}$	$\begin{array}{r} 1789 \cdot 7 \\ 724 \cdot 3 \end{array}$	$1914631 \cdot 3$ $22734 \quad 58 \cdot 5$ $26539 \quad 20 \cdot 5$	$\begin{array}{llll} 11 & 47 & 59 \cdot 1 \\ 47 & 41 & 05 \cdot 1 \\ 85 & 48 & 07 \cdot 9 \end{array}$	Yukon Knoll. Loop	$\begin{aligned} & 6308 \cdot 7 \\ & 7280 \cdot 6 \\ & 7768 \cdot 6 \end{aligned}$	$\begin{aligned} & 3 \cdot 799940 \\ & 3 \cdot 862169 \\ & 3 \cdot 890343 \end{aligned}$
Trail, 1907.	$1001 \cdot 9$	3287	$\begin{array}{rrr} 64 & 37 & 34 \cdot 260 \\ 141 & 01 & 38 \cdot 088 \end{array}$	$\begin{array}{r} 1050 \cdot 9 \\ 506 \cdot 2 \end{array}$	$\begin{array}{rrr} 27 & 25 & 07 \cdot 8 \\ 127 & 14 & 42 \cdot 7 \\ 233 & 52 & 46 \cdot 8 \\ 325 & 10 & 54 \cdot 8 \\ 349 & 48 & 19 \cdot 6 \end{array}$	$2072107 \cdot 3$	Slope. Plateau. Loop. Table. E of the Boundary (Monument No. 115)	$\begin{aligned} & 7699 \cdot 0 \\ & 4277 \cdot 4 \\ & 5375 \cdot 1 \\ & 9755 \cdot 2 \end{aligned}$	$\begin{aligned} & 3 \cdot 886437 \\ & 3 \cdot 631177 \\ & 3 \cdot 730389 \\ & 3 \cdot 989237 \end{aligned}$
						$\begin{array}{lllllllllllllll}357 & 10 & 50 \cdot 9\end{array}$			
						$535742 \cdot 4$			
						$14517 \quad 12 \cdot 5$			
						$1674948 \cdot 3$		$7381 \cdot 6$	$3 \cdot 868153$
U. S. G. S. Cairn, 1907.....	$1222 \cdot 0$	4009	$\begin{array}{rrr} 6435 & 40 \cdot 790 \\ 141 & 07 & 28.955 \end{array}$	$\begin{array}{r} 1263 \cdot 2 \\ 385 \cdot 2 \end{array}$	$\begin{array}{lll} 191 & 36 & 27 \cdot 6 \\ 232 & 57 & 54 \cdot 6 \\ 317 & 51 & 33 \cdot 5 \\ 341 & 15 & 12 \cdot 4 \end{array}$	$\begin{array}{rrr} 11 & 37 & 52 \cdot 9 \\ 53 & 03 & 11 \cdot 6 \\ 137 & 55 & 54 \cdot 1 \\ 161 & 16 & 28 \cdot 9 \end{array}$	Plateau Trail Path Slope	$6228 \cdot 6$	$3 \cdot 794392$
								$5840 \cdot 4$	$3 \cdot 766445$
								$6326 \cdot 8$	$3 \cdot 801184$
								$3508 \cdot 0$	$3 \cdot 545060$
Slope, 1907.	$1235 \cdot 0$	4052	$643353 \cdot 518$$1410604 \cdot 302$	$\begin{array}{r} 1657.4 \\ 57 \cdot 3 \end{array}$	$\begin{array}{llll}180 & 47 & 11 \cdot 1 \\ 218 & 11 & 22 \cdot 0\end{array}$	04719.9$38 \quad 2018.0$	Plateau Loop.	$\begin{array}{r} 9424 \cdot 0 \\ 12738 \cdot 3 \end{array}$	$\begin{aligned} & 3 \cdot 974234 \\ & 4 \cdot 105110 \end{aligned}$
Table, 1907.	$1059 \cdot 8$	3477	$\begin{array}{rrr} 6433 & 15 \cdot 493 \\ 14054 & 40 \cdot 009 \end{array}$	$\begin{aligned} & 479 \cdot 8 \\ & 533 \cdot 0 \end{aligned}$	$\begin{array}{rrr} 97 & 26 & 50 \cdot 7 \\ 139 & 50 & 37 \cdot 6 \\ 173 & 50 & 05 \cdot 9 \end{array}$	277 319 16 453 353 48 8	Slope. Plateau Loop.	$\begin{array}{r} 9190 \cdot 7 \\ 13887 \cdot 3 \\ 11244 \cdot 5 \end{array}$	$\begin{aligned} & 3 \cdot 963348 \\ & 4 \cdot 142618 \\ & 4 \cdot 050942 \end{aligned}$
Path, 1907.................	$1088 \cdot 0$	3570	$\begin{array}{rrr} 64 & 33 & 09 \cdot 230 \\ 141 & 02 & 10.352 \end{array}$	$\begin{aligned} & 285 \cdot 2 \\ & 138 \cdot 0 \end{aligned}$	$\begin{array}{rrr} 2 & 09 & 32 \cdot 1 \\ 113 & 47 & 37 \cdot 3 \\ 268 & 05 & 10 \cdot 7 \\ 311 & 58 & 14 \cdot 4 \end{array}$	$\begin{array}{rrr} 182 & 09 & 10 \cdot 6 \\ 293 & 44 & 05 \cdot 0 \\ 88 & 11 & 57 \cdot 4 \\ 132 & 05 & 34 \cdot 0 \end{array}$	Liberty Slope. Table Woody	$\begin{aligned} & 8480 \cdot 5 \\ & 3405 \cdot 1 \\ & 6003 \cdot 2 \\ & 9938 \cdot 4 \end{aligned}$	$\begin{aligned} & 3.928424 \\ & 3 \cdot 532128 \\ & 3.778381 \\ & 3.997315 \end{aligned}$
Smoke, 1913..............	$1007 \cdot 0$	3304	$\begin{array}{rrr}64 & 33 & 07 \cdot 198 \\ 140 & 56 & 30 \cdot 144\end{array}$	$\begin{aligned} & 222 \cdot 9 \\ & 401 \cdot 7 \end{aligned}$	$\begin{array}{rrr}30 & 03 & 10 \cdot 3 \\ 90 & 49 & 49 \cdot 5 \\ 100 & 41 & 41 \cdot 6 \\ 118 & 33 & 13 \cdot 2 \\ 260 & 03 & 23 \cdot 2\end{array}$	$2095741 \cdot 7$	Liberty Path. . Slope. U. S. G. S. Cairn Table.	$\begin{aligned} & 9714 \cdot 3 \\ & 4533 \cdot 3 \\ & 7781 \cdot 6 \\ & 9977 \cdot 9 \\ & 1489 \cdot 7 \end{aligned}$	$\begin{aligned} & 3 \cdot 987412 \\ & 3 \cdot 656414 \\ & 3 \cdot 891069 \\ & 3 \cdot 999038 \\ & 3 \cdot 173093 \end{aligned}$
						$\begin{array}{llll}270 & 44 & 42 \cdot 2 \\ 280 & 33 & 03 \cdot 1\end{array}$			
						$298 \quad 2318 \cdot 2$			
						$800502 \cdot 7$			
Woody, 1907.	$937 \cdot 3$	3075	$\begin{array}{rrr}64 & 29 & 34 \cdot 311 \\ 140 & 52 & 56 \cdot 981\end{array}$	$\begin{array}{r} 1052 \cdot 6 \\ 760 \cdot 9 \end{array}$	764746.61272958.01684003.9	$\begin{array}{llll}256 & 39 & 05 \cdot 6 \\ 307 & 18 & 07 \cdot 1 \\ 348 & 38 & 35 \cdot 9\end{array}$	Liberty Slope Table	$\begin{array}{r} 7922 \cdot 4 \\ 13216 \cdot 3 \\ 6986 \cdot 3 \end{array}$	$\begin{aligned} & 3 \cdot 898854 \\ & 4 \cdot 121109 \\ & 3 \cdot 844245 \end{aligned}$
Liberty, 1907..............	1080 - 2	3544	$\begin{array}{rrr}64 & 28 & 35 \cdot 564 \\ 141 & 02 & 34 \cdot 263\end{array}$	$\begin{array}{r} 1101.4 \\ 457.8 \end{array}$	$\begin{array}{llll}164 & 03 & 36 \cdot 2 \\ 216 & 03 & 55 \cdot 7\end{array}$	$\begin{array}{rrr}344 & 05 & 25.5 \\ 36 & 11 & 03.8\end{array}$	Slope....	$10237 \cdot 5$	$\begin{aligned} & 4 \cdot 010196 \\ & 4 \cdot 030706 \end{aligned}$
								$10732 \cdot 6$	
Fortymile Dome, U. S. G. S., 1907.	1276.9	4189	$\begin{array}{rrr} 64 & 26 & 17.579 \\ 141 & 02 & 05 \cdot 234 \end{array}$	$\begin{array}{r} 544 \cdot 4 \\ 70 \cdot 0 \end{array}$	$\begin{array}{lll} 174 & 48 & 50 \cdot 2 \\ 230 & 11 & 27 \cdot 8 \end{array}$	$3544824 \cdot 0$$501942 \cdot 5$	Liberty	$4290 \cdot 8$	$3 \cdot 632540$
								9529.9	3.979088
Bare, 1907........	$1065 \cdot 8$	3497	6425 140 559.410 59	1251.5795.8	$\begin{array}{llll}103 & 15 & 44 \cdot 3 \\ 135 & 49 & 25 \cdot 4 \\ 198 & 35 & 20 \cdot 2\end{array}$	$\begin{array}{rrrr}283 & 11 & 14 \cdot 4 \\ 315 & 43 & 29 \cdot 2 \\ 18 & 38 & 04 \cdot 9\end{array}$	Fortymile Dome. Liberty. Woody.	$5028 \cdot 4$	$3 \cdot 701428$
								$7569 \cdot 5$ $7643 \cdot 3$	3.879068 3.883283
Uncle Sam, 1907.....	$961 \cdot 3$	3154	$\begin{array}{rrr}64 & 22 & 25 \cdot 057 \\ 141 & 00 & 45 \cdot 080\end{array}$	$\begin{aligned} & 776 \cdot 0 \\ & 604 \cdot 3 \end{aligned}$	$\begin{array}{lll}202 & 12 & 48 \cdot 3 \\ 232 & 17 & 28 \cdot 7\end{array}$	$\begin{array}{lll}22 & 16 & 06 \cdot 6 \\ 52 & 26 & 16 \cdot 8\end{array}$	Fortymile Dome....Bare........... . .	$7779 \cdot 7$9907	$\begin{aligned} & 3 \cdot 890961 \\ & 3 \cdot 995959 \end{aligned}$
John Bull, 1907.	$917 \cdot 6$	3011	$\begin{array}{r} 64 \quad 2205 \cdot 715 \\ 1405555 \cdot 618 \end{array}$	$\begin{array}{r} 177 \cdot 0 \\ 746 \cdot 0 \end{array}$	$\begin{array}{rrr}94 & 24 & 23 \cdot 8 \\ 147 & 38 & 16 \cdot 3 \\ 151 & 35 & 23 \cdot 4\end{array}$	$\begin{array}{lll}274 & 15 & 32 \cdot 3 \\ 327 & 32 & 43 \cdot 0 \\ 331 & 31 & 43 \cdot 1\end{array}$	Uncle Sam. Fortymile Dome. F of the Boundary (Monument No. 118) Bare.	$\begin{aligned} & 7928 \cdot 4 \\ & 9238 \cdot 8 \end{aligned}$	$\begin{aligned} & 3 \cdot 899185 \\ & 3 \cdot 965615 \end{aligned}$
								$6876 \cdot 1$	3.837345
					$1793328 \cdot 0$	$3593324 \cdot 5$		$6649 \cdot 0$	3.822754
River, 1907.	$910 \cdot 0$	2986	$\begin{array}{r}6417 \\ 141 \\ \hline 1\end{array}$	$1645 \cdot 1$	$\begin{array}{llll}174 & 07 & 20 \cdot 3\end{array}$	$3540622 \cdot 0$	Uncle Sam.	$8466 \cdot 0$	3.927676
				$543 \cdot 5$	$2215717 \cdot 7$	$\begin{array}{llllllllllllll}42 & 05 & 10 \cdot 7\end{array}$	John Bull.	$10529 \cdot 4$	4-022404
Moose, 1907.	$978 \cdot 8$	3211	$\begin{array}{llll}64 & 15 & 52.853\end{array}$	1636.8	$11215 \quad 53 \cdot 2$	$2920541 \cdot 5$	River.	$9865 \cdot 8$	3.994132
			$1405321 \cdot 473$	$289 \cdot 1$	$\begin{array}{lllll}140 & 39 & 00 \cdot 3\end{array}$	$32027 \quad 50 \cdot 1$	Uncle Sam	$15727 \cdot 6$	$4 \cdot 196663$
					$1695054 \cdot 7$	$3494835 \cdot 8$	John Bull	$11731 \cdot 2$	4.069341

GEOGRAPHIC POSITIONS OF TRIANGULATION STATIONS—Continued.

[^31]GEOGRAPHIC POSITIONS OF TRIANGULATION STATIONS-Continued.

Station.	Elevat	on.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Logarithm.
Sixtymile River, West Base, 1907.	Meters.	Feet.	- ' 1		- ,	"		Meters.	
	$972 \cdot 2$	3190	$\begin{array}{rrr}63 & 54 & 33 \cdot 720 \\ 141 & 06 & 04 \cdot 011\end{array}$	$\begin{array}{r} 1044 \cdot 1 \\ 54 \cdot 7 \end{array}$	$26319 \quad 17 \cdot 7$	$83 \quad 2004 \cdot 3$	Sixtymile River, East Base. .	$2547 \cdot 5$	$3 \cdot 406120$
					$\begin{array}{llll}315 & 55 & 10 \cdot 3\end{array}$	$\begin{array}{llll}136 & 02 & 20 \cdot 6\end{array}$	Crag...............	9415 $\cdot 4$	3.973841
					$333 \quad 2546 \cdot 6$	$15313113 \cdot 3$	I of the Boundary (Monument No. 133)	$11132 \cdot 9$	$4 \cdot 046608$
					$151343 \cdot 8$	$\begin{array}{llll}195 & 10 & 35 \cdot 8\end{array}$	Divide.............	$10907 \cdot 2$	4.037713
					$13817 \quad 01 \cdot 1$	$\begin{array}{llll}318 & 11 & 17 \cdot 4\end{array}$	Witherspoon	$7825 \cdot 5$	$3 \cdot 893512$
Sixty, 1913.	$867 \cdot 9$	2847	$635413 \cdot 854$1405923	$\begin{aligned} & 429 \cdot 0 \\ & 316 \cdot 2 \end{aligned}$	$\begin{array}{rrr}77 & 2312.3 \\ 107 & 167.5\end{array}$	$\begin{array}{llll}257 & 11 & 20.4\end{array}$	Lode.....	$11088 \cdot 8$	4.044886
					$1071657 \cdot 5$	$2871344 \cdot 2$	Sixtymile River, East Base.	$3074 \cdot 2$	3.487735
					$350 \quad 0706 \cdot 4$	$170 \quad 0816.8$	Crag.	$6247 \cdot 8$	$3 \cdot 795730$
Lode, 1907.	$1266 \cdot 6$	4155	$\begin{array}{rrr}63 & 52 & 55 \cdot 053 \\ 141 & 12 & 35 \cdot 945\end{array}$	$\begin{array}{r} 1704 \cdot 8 \\ 490 \cdot 6 \end{array}$	$\begin{array}{llll}180 & 49 & 12 \cdot 3 \\ 230 & 19 & 42 \cdot 4\end{array}$	$\begin{array}{rrrr}0 & 49 & 20.7 \\ 50 & 32 & 28.4\end{array}$	Witherspoon.	8893.3	3.949061
					$\begin{array}{lll}230 & 19 & 42 \cdot 4 \\ 240 & 12 & 29.9\end{array}$	$\begin{array}{lll}50 & 32 & 28.4 \\ 60 & 18 & 21.9\end{array}$	Bedrock........... ${ }_{\text {S }}^{\text {Sixtymile River , }}$	$15080 \cdot 7$	$4 \cdot 178421$
							Base.	$6158 \cdot 6$	$3 \cdot 789484$
					$2465246 \cdot 7$	$670125 \cdot 3$	Sixtymile River, East Base.	8561.9	3.932572
					$28713 \quad 51 \cdot 2$	$1072653 \cdot 3$	Crag.	$12465 \cdot 7$	4.095717
					$\begin{array}{lllll}300 & 36 & 17 \cdot 6\end{array}$	$\begin{array}{llll}120 & 43 & 22 \cdot 4\end{array}$	Spur	$7512 \cdot 0$	$3 \cdot 875755$
					$34130 \quad 37 \cdot 9$	$1613321 \cdot 8$	Divide	$7875 \cdot 7$	3-896287
Crag, 1907................	$1541 \cdot 7$	5058	$635055 \cdot 077$	$1705 \cdot 4$	$1370643 \cdot 5$	$3165349 \cdot 5$	Witherspoon.	$17237 \cdot 3$	$4 \cdot 236470$
			$1405804 \cdot 724$	$64 \cdot 6$	$1785603 \cdot 0$	$3585546 \cdot 6$	Bedrock.	$13323 \cdot 2$	$4 \cdot 124610$
Spur, 1907..........	$1353 \cdot 8$	4442	$\begin{array}{rrrr} 63 & 50 & 51 \cdot 334 \\ 141 & 04 & 42 \cdot 856 \end{array}$	1589.6$585 \cdot 8$	$\begin{array}{llll}153 & 37 & 32 \cdot 1 \\ 170 & 52 & 14 \cdot 0\end{array}$	$3333035 \cdot 6$	Witherspoon........	14208.8	$4 \cdot 152558$
					$1705214 \cdot 0$	35051 01.1	Sixtymile River West Base..	$6975 \cdot 0$	$3 \cdot 843545$
					$1911231 \cdot 0$	$111404 \cdot 7$	Sixtymile River, East Base................	7323.2	$3 \cdot 864700$
					$\begin{array}{llll}210 & 02 & 19.9\end{array}$	$210801 \cdot 0$	Bedrock.	$14401 \cdot 2$	$4 \cdot 158398$
					$2684347 \cdot 5$	$884944 \cdot 8$	Crag.	$5442 \cdot 3$	$3 \cdot 735782$
					$308.2656 \cdot 3$	$1283106 \cdot 0$	I of the Boundary.	$4940 \cdot 8$	3-693797
Divide, 1907............... .	$1561 \cdot 8$	5124	$\begin{array}{rrr}63 & 48 & 53.817\end{array}$	1666.4	$\begin{array}{lll}171 & 48 & 08 \cdot 3 \\ 208 & 05 & 51 \cdot 2\end{array}$	$\begin{array}{rlll}351 & 45 & 32 \cdot 8\end{array}$	Witherspoon.	$16532 \cdot 3$	$4 \cdot 218333$
			1410933.406	$457 \cdot 0$	$\begin{array}{llll}208 & 05 & 51 \cdot 2 \\ 248 & 10 & 32 \cdot 0\end{array}$	$\begin{array}{llll}28 & 15 & 53 \cdot 2 \\ 68 & 20 & 50 \cdot 1\end{array}$	Bedrock.	$19372 \cdot 3$ $10138 \cdot 3$	$4 \cdot 287181$ $4 \cdot 005964$
Odell, 1908......	$1180 \cdot 6$	3873	$6346 \quad 27 \cdot 756$	859.4	840208.8	$\begin{array}{llll}263 & 49 & 37 \cdot 5\end{array}$	Fred.	$11543 \cdot 8$	$4 \cdot 062348$
			$1405510 \cdot 410$	$142 \cdot 6$	$\begin{array}{lll}111 & 03 & 08.8\end{array}$	$2905014 \cdot 5$	Divide	$12652 \cdot 5$	$4 \cdot 102175$
					$1635648 \cdot 6$	$3435412 \cdot 2$	Crag.	$8614 \cdot 7$	$3 \cdot 935238$
Charlie, 1913...............	$894 \cdot 2$	2934	$6346 \quad 25 \cdot 494$	789.4	$812136 \cdot 6$	$\begin{array}{llll}261 & 13 & 15 \cdot 0\end{array}$	Fred.	$7598 \cdot 2$	$3 \cdot 880708$
			$1410000 \cdot 009$	$0 \cdot 1$	$\begin{array}{llll}120 & 23 & 55 \cdot 5 \\ 180 & 01 & 04 \cdot 9\end{array}$	$\begin{array}{rrrr}300 & 15 & 21 \cdot 0 \\ 00 & 01 & 04 \cdot 9\end{array}$	Divide. . . Monument No. 134. .	$9096 \cdot 0$ $391: 9$	3.958850 2.593165
Fred, 1908.	$1404 \cdot 3$	4607	$634548 \cdot 345$	$1497 \cdot 0$	$\begin{array}{llll}176 & 32 & 12.9\end{array}$	$\begin{array}{llll}356 & 31 & 50 \cdot 1\end{array}$	Divide	$5753 \cdot 8$	$3 \cdot 759955$
			1410908.004	$107 \cdot 7$	2233719.7	$43 \quad 47 \quad 14 \cdot 9$	Crag	$13138 \cdot 9$	4-118558
Bill, 1908.	$1338 \cdot 1$	4390	634454.976	$1702 \cdot 3$	$62650 \cdot 6$	$\begin{array}{llll}186 & 26 & 24 \cdot 6\end{array}$	Interior.	$3540 \cdot 0$	$3 \cdot 549007$
			$1410107 \cdot 695$	$105 \cdot 5$	41 49 104	$\begin{array}{llll}221 & 41 & 19 \cdot 6\end{array}$	Round	11194.4	$4 \cdot 049008$
					104 239 1		Fred. Odell	$6789 \cdot 8$ 5678.3	$3 \cdot 831854$ 3.754215
Interior, 1908.	$1221 \cdot 0$	4006	$634301 \cdot 377$	$42 \cdot 6$	$1295503 \cdot 5$	3094818.7	Fred.	$8066 \cdot 8$	3.906701
			$1410136 \cdot 647$	$503 \cdot 2$	$2193634 \cdot 4$	$3942 \quad 20 \cdot 8$	Odell.	$8301 \cdot 0$	3.919128
Ladue, 1908................	$927 \cdot 8$	3044	$\begin{array}{llll}63 & 40 & 45 \cdot 476\end{array}$	$1408 \cdot 1$	875742.8	$\begin{array}{llll}267 & 39 & 55 \cdot 5\end{array}$	Round.	$16384 \cdot 7$	$4 \cdot 214438$
			$1405019 \cdot 790$	$272 \cdot 1$	$\begin{array}{llll}114 & 25 & 56 \cdot 2\end{array}$	$\begin{array}{llll}294 & 15 & 49 \cdot 4\end{array}$	Interio	$10207 \cdot 3$	4-008910
					$\begin{array}{llll}121 & 20 & 12 \cdot 4 \\ 159 & 24 & 45 \cdot 7\end{array}$	$\begin{array}{llll}301 & 03 & 20 \cdot 8 \\ 339 & 20 & 25 \cdot 1\end{array}$	Fred.	$18106 \cdot 2$ $11324 \cdot 7$	$4 \cdot 257827$ $4 \cdot 054025$
Round, 1908............... .	$1193 \cdot 2$	3915	$6340 \quad 25 \cdot 290$	$783 \cdot 1$	1845359.6	$45455 \cdot 6$	Fred.	$10040 \cdot 4$	4.001751
			$14110 \quad 10 \cdot 569$	$145 \cdot 3$	$\begin{array}{lllllllll}235 & 32 & 45 \cdot 9\end{array}$	$5540 \quad 26 \cdot 6$	Interior	$8557 \cdot 2$	$3 \cdot 932333$
Junction, 1908.	$795 \cdot 5$	2610	$63 \quad 3613 \cdot 438$	$416 \cdot 1$	$1 \begin{array}{llll}128 & 22 & 20 & 7\end{array}$	$3081137 \cdot 6$	Round	12587 . 6	$4 \cdot 099943$
			$14058 \quad 12 \cdot 904$	$177 \cdot 9$	$\begin{array}{lllll}217 & 39 & 07 \cdot 6\end{array}$	$\begin{array}{llll}37 & 46 & 11 \cdot 5 \\ 96 & 37 & 10.1\end{array}$	Ladue.	10648.0	4.027268
					$2763143 \cdot 6$	$963710 \cdot 1$	Ridge	$5058 \cdot 8$	3-704044
Timber, 1908.............. .	977.3	3206	$\begin{array}{llll}63 & 36 & 04 & 642\end{array}$	$143 \cdot 7$	$\begin{array}{llll}175 & 52 & 06 \cdot 2\end{array}$	$3555128 \cdot 2$	Round	$8092 \cdot 1$	3.908062
			$1410928 \cdot 171$	$388 \cdot 3$	$2410240 \cdot 8$	$61 \quad 1949 \cdot 7$	Ladue.	$18043 \cdot 7$	$4 \cdot 256326$
Ridge, 1908.	$1002 \cdot 4$	3289	$63 \quad 35$ 54.734	$1694 \cdot 8$	$912119 \cdot 1$	$2710547 \cdot 7$	Timber	$14338 \cdot 7$	$4 \cdot 156509$
			$1405208 \cdot 372$	$115 \cdot 4$	$\begin{array}{llll}119 & 28 & 50 \cdot 4\end{array}$	$2991240 \cdot 8$	Round	$17094 \cdot 6$	$4 \cdot 232859$
					1892451.9	$92629 \cdot 2$	Ladue	$9126 \cdot 1$	3-960287
Edward, 1910..	$1243 \cdot 1$	4078	$\begin{array}{llll}63 & 34 & 29 \cdot 181\end{array}$	$903 \cdot 6$	402913.4	$\begin{array}{llll}220 & 18 & 20 \cdot 8\end{array}$	K of the Boundary.	$15553 \cdot 5$	$4 \cdot 191827$
			$1404750 \cdot 882$	$702 \cdot 1$	$573515 \cdot 7$	$\begin{array}{lllll}237 & 17 & 07.0\end{array}$	Summit............	$19947 \cdot 5$	$4 \cdot 299887$
					$\begin{array}{llll}126 & 45 & 05 \cdot 3\end{array}$	$\begin{array}{llll}306 & 41 & 14 \cdot 7\end{array}$	Ridge.	4430-8	$3 \cdot 646481$
					$3550401 \cdot 6$	$1750501 \cdot 5$	Point.	10773 -6	4-032362

GEOGRAPHIC POSITIONS OF TRIANGULATION STATIONS—Continued.

Station.	Eleva	on.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Logarithm.
Victoria, 1910.	Meters.	Feet.	- , "	$\begin{array}{r} 1100 \cdot 9 \\ 731.0 \end{array}$	- , "	- '		Meters.	
			$\begin{array}{rrrr}63 & 31 & 35 \cdot 554\end{array}$		$\begin{array}{rrrr}7 & 31 & 14.4\end{array}$	$\begin{array}{llll}187 & 30 & 28 \cdot 7\end{array}$	Point..............	5403.9	3.732709
			$1404552 \cdot 887$		$\begin{array}{llll}6112 & 39 \cdot 4 \\ 73 & 58 & 23 \cdot 2\end{array}$	$\begin{array}{llll}241 & 00 & 01 \cdot 3 \\ 253 & 38 & 29 \cdot 0\end{array}$	K of the Boundary	$13387 \cdot 5$ $19220 \cdot 7$	$4 \cdot 126698$ $4 \cdot 283768$
					$14711 \quad 20 \cdot 7$	$\begin{array}{llll} \\ 327 & 05 & 44 \cdot 5\end{array}$	Ridge..	19253.9	$3 \cdot 980181$
Point, 1908.	$1077 \cdot 7$	3536	$63 \quad 2842 \cdot 533$$1404643 \cdot 971$	$\begin{array}{r} 1317.0 \\ 608.8 \end{array}$	$\begin{array}{r}90 \\ \hline 0\end{array}$	$2694956 \cdot 1$	Summit.	$17766 \cdot 3$	4-249598
					$\begin{array}{llll}126 & 09 & 43 \cdot 7 \\ 161 & 31 & 27 \cdot 3\end{array}$	$\begin{array}{llll}305 & 49 & 22 \cdot 4 \\ 341 & 26 & 36 \cdot 9\end{array}$	Timber	$23294 \cdot 5$ 14113.6	$4 \cdot 367254$ $4 \cdot 149638$
Summit, 1908..	$1273 \cdot 7$	4179	$632842 \cdot 450$	1314.4	$175 \quad 2013 \cdot 4$	$3551900 \cdot 9$	Timber	$13738 \cdot 0$	4-137924
			$14108 \quad 07 \cdot 160$	$99 \cdot 1$	$2243458 \cdot 1$	$4449 \quad 16 \cdot 6$	Ridge.	$18832 \cdot 3$	4.274904
Fra-wa-pe, 1908..	$1100 \cdot 1$	3609	$631846 \cdot 319$	$1434 \cdot 2$	$885017 \cdot 0$	$2683330 \cdot 0$	Oh-ti.	$15700 \cdot 0$	4. 195899
			$1404640 \cdot 777$	$567 \cdot 8$	$\begin{array}{llll}136 & 06 & 02 \cdot 5 \\ 179 & 51 & 45.9\end{array}$	315 359 $4^{51} 52 \cdot 3$	Summit	$25686 \cdot 0$ $18461 \cdot 3$	$4 \cdot 409697$
Oh-ti, 1908.	$1090 \cdot 0$	3576	$631834 \cdot 800$	$1077 \cdot 6$	$\begin{array}{llll}173 & 18 & 50 \cdot 3\end{array}$	$\begin{array}{llll}353 & 16 \quad 27.9\end{array}$	Summit	$18945 \cdot 0$	4.277494
			$\begin{array}{llll}141 & 05 & 27 \cdot 851\end{array}$	387.9	$2193151 \cdot 1$	$3948 \quad 36 \cdot 1$	Point.	$24447 \cdot 4$	$4 \cdot 388232$
Howard, 1910.	\ldots	$\begin{array}{lll}63 & 16 & 47 \cdot 373\end{array}$	$1466 \cdot 9$	$\begin{array}{llll}345 & 24 & 50 \cdot 0 \\ 7 & 11 & 38 \cdot 5\end{array}$	$1652729 \cdot 1$	Brown..	9891.6	3.995266
			$1405904 \cdot 530$	$63 \cdot 1$	$71138 \cdot 5$	$1871049 \cdot 0$	Monument No. 148.	$6187 \cdot 1$	3.791488
					$82 \quad 2609 \cdot 6$	$262 \quad 2432 \cdot 7$	Hyacinthe.	$1528 \cdot 2$	3-184183
Hyacinthe, 1910.		\ldots	$631640 \cdot 865$	$1265 \cdot 3$	$3364942 \cdot 5$	$1565358 \cdot 6$	Brown.	10191.9	4.008255
			$1410053 \cdot 185$	$741 \cdot 5$	$3525203 \cdot 3$	$1725250 \cdot 8$	Monument No. 148 .	$5983 \cdot 2$	$3 \cdot 776933$
Bump, 1908..	$897 \cdot 4$	2944	$\begin{array}{llll}63 & 14 & 07.047\end{array}$	$218 \cdot 2$	$\begin{array}{llll}210 & 09 & 35 \cdot 7\end{array}$	$301444 \cdot 8$	Oh-ti.	$9592 \cdot 8$	3.981945
			$1411113 \cdot 910$	$194 \cdot 2$	$24659 \quad 17 \cdot 2$	$672113 \cdot 0$	Fra-wa-pe	$22287 \cdot 5$	4-348062
Brown, 1908.......	$1096 \cdot 3$	3597	$\begin{array}{llll}63 & 11 & 38 \cdot 178\end{array}$	$1182 \cdot 2$	$\begin{array}{llll}110 & 0519 \cdot 2\end{array}$	$2895149 \cdot 0$	Bump	$13492 \cdot 6$	$4 \cdot 130090$
			$1405606 \cdot 380$	$89 \cdot 2$	$1484744 \cdot 5$	$\begin{array}{llll}328 & 39 & 23 \cdot 1\end{array}$	Oh-ti.	$15093 \cdot 2$	$4 \cdot 178780$
					$2104151 \cdot 8$	305016.9	Fra-wa	$15428 \cdot 3$	4-188316
Black, 1908.	1039 - 0	$3409{ }^{1}$	$\begin{array}{llll}63 & 10 & 13.909\end{array}$	$430 \cdot 7$	$722603 \cdot 6$	$\begin{array}{llll}252 & 1515 \cdot 0\end{array}$	Missou	$9693 \cdot 7$	3.986489
			$14047 \quad 26 \cdot 972$	$377 \cdot 4$	109 109	$\begin{array}{lllll}289 & 41 & 23 \cdot 3\end{array}$	Brown	$7720 \cdot 0$	$3 \cdot 887620$
					$\begin{array}{llll}135 & 55 & 10 \cdot 6 \\ 182 & 19 & 19 \cdot 0\end{array}$	$3153905 \cdot 5$ $2 \quad 2000.2$	Oh-ti..	21638.8 15879.1	$4 \cdot 335232$ $4 \cdot 200826$
Missou, 1908.	$1241 \cdot 8$	4074	$6308 \quad 38.912$	$1204 \cdot 9$	$\begin{array}{llll}133 & 32 & 03.8\end{array}$	$\begin{array}{lllll}313 & 20 & 39 \cdot 1\end{array}$	Bump.	$14776 \cdot 5$	4.169572
			$14058 \quad 26 \cdot 707$	$374 \cdot 1$	$1992800 \cdot 2$	$193005 \cdot 4$	Brown	$5887 \cdot 8$	$3 \cdot 769956$
Moosehorn, 1908.	1305.4	4283	$\begin{array}{llll}63 & 04 & 03.278\end{array}$	$101 \cdot 5$	$875004 \cdot 8$	$2673601 \cdot 3$	Flat	13298.8	4. 123814
			$1405644 \cdot 439$	$624 \cdot 2$	$1470055 \cdot 0$	$32648 \quad 59 \cdot 3$	Bump	$22309 \cdot 8$	$4 \cdot 348496$
					$\begin{array}{llll}170 & 28 & 20 \cdot 3\end{array}$	$3502649 \cdot 1$	Missou	$8654 \cdot 1$	3.937223
					$1820949 \cdot 4$	$21023 \cdot 4$	Brown	$14095 \cdot 2$	$4 \cdot 149070$
Flat, 1908.	$1031 \cdot 0$	3383	$630346 \cdot 171$	$1429 \cdot 7$	$\begin{array}{llll}183 & 11 & 12 \cdot 3\end{array}$	$\begin{array}{llll}3 & 12 & 20 \cdot 7\end{array}$	Bump.	$19254 \cdot 1$	4.284524
			$1411230 \cdot 566$	$429 \cdot 3$	$232 \quad 27 \quad 04 \cdot 9$	$523937 \cdot 5$	Missou	$14908 \cdot 3$	4.173428
Sauerkraut, 1908	$818 \cdot 7$	2686	$0625815 \cdot 385$	$476 \cdot 3$	$\begin{array}{llll}18711 & 54 \cdot 5\end{array}$	$71316 \cdot 6$	Flat.	$10323 \cdot 6$	$4 \cdot 013831$
			$\begin{array}{llll}141 & 14 & 02 \cdot 664\end{array}$	$37 \cdot 5$	$233 \quad 27 \quad 40 \cdot 7$	$\begin{array}{llll}53 & 43 & 05.9\end{array}$	Moosehorn	$18147 \cdot 3$	$4 \cdot 258813$
Wienerwurst, 1908.	$914 \cdot 4$	3000	$625445 \cdot 923$	$1421 \cdot 8$	1135909.5	$2934343 \cdot 6$	Sauerkraut	$16034 \cdot 6$	4. 205058
			$1405642 \cdot 948$	$606 \cdot 4$	$\begin{array}{llll}141 & 32 & 07 \cdot 3 \\ 179 & 55 & 49\end{array}$	$\begin{array}{llll}321 & 18 & 03 \cdot 1\end{array}$	Flat.	$21398 \cdot 1$	$4 \cdot 330376$
Sawback, 1908..	$\ldots .$.	\ldots	$624853 \cdot 439$	$1654 \cdot 5$	494859.4	$2294210 \cdot 8$	Mick	$8532 \cdot 0$	3.931050
			$1405442 \cdot 657$	$604 \cdot 3$	$\begin{array}{lllll}79 & 54 & 22 \cdot 6 \\ 92 & 5\end{array}$	$\begin{array}{llll}259 & 48 & 20 \cdot 2 \\ 272 & 48 & 07 \cdot 2\end{array}$	Scottie.........	$5863 \cdot 7$ $4500 \cdot 7$	3.768169
					$925249 \cdot 5$	$27248 \quad 07 \cdot 2$	O of the Boundary...	$4500 \cdot 7$	$3 \cdot 653278$
Scottie, 1908.	1123.9	3687							$4 \cdot 035776$
			$1410130 \cdot 063$	$426 \cdot 0$	$1500635 \cdot 0$	$32955 \quad 25 \cdot 0$	Sauerkraut.	21279.4	$4 \cdot 327960$
					$1984422 \cdot 0$	$184837 \cdot 5$	Wienerwurs	12617.6	4-100977
Tanana, 1908.	$886 \cdot 0$	2907	624753.772	$1664 \cdot 8$	$\begin{array}{llll}180 & 28 & 50.9\end{array}$	$02901 \cdot 1$	Sauerkraut.	$19247 \cdot 0$	4.284362
			$1411414 \cdot 127$	$200 \cdot 2$	$2291405 \cdot 8$	$492941 \cdot 2$	Wienerwurst	$19594 \cdot 7$	$4 \cdot 292138$
Mick, 1908.	$1048 \cdot 4$	3440	62 45 55	$1716 \cdot 0$	$\begin{array}{llll}327 & 27 & 38 \cdot 7 \\ 8 & 57 & 55\end{array}$	$\begin{array}{llll}147 & 30 & 11.4\end{array}$	Starvation	$4536 \cdot 6$	$3 \cdot 656733$
			$1410222 \cdot 034$	$312 \cdot 7$	$85755 \cdot 6$	$1885431 \cdot 1$	Airs.	$21095 \cdot 6$	$4 \cdot 324192$
					$4232 \begin{array}{rrr}421 \cdot 8\end{array}$	$2222429 \cdot 8$	Mirror.	$11172 \cdot 7$	$4 \cdot 048160$
					$\begin{array}{lllllllllllll}110 & 01 & 51.9\end{array}$	$2895118 \cdot 6$	Tanana	$10742 \cdot 6$	$4 \cdot 031111$
					$189 \quad 20 \quad 13 \cdot 5$	92059.7	Scottie.	$4539 \cdot 0$	3-656964
Starvation, 1908.	$1062 \cdot 7$	3486	$624351 \cdot 872$	$1606 \cdot 0$	$\begin{array}{llll}120 & 5713 \cdot 2\end{array}$	$30044 \quad 07 \cdot 3$	Tanana	$14607 \cdot 7$	$4 \cdot 164583$
			$1405930 \cdot 260$	$429 \cdot 8$	$\begin{array}{llll}168 & 26 & 49 \cdot 8 \\ 177 & 28 & 38\end{array}$	$\begin{array}{llll}348 & 25 & 03 \cdot 3\end{array}$	Scottie.	$8476 \cdot 4$	$3 \cdot 928209$
					$1772838 \cdot 0$	$3572811 \cdot 5$	O of the Boundary..	$9569 \cdot 3$	3-980881
Rupe, 1909.	$1114 \cdot 3$	3656	624349.900	1544.9	$701005 \cdot 5$	$24957 \quad 34 \cdot 9$	Mirror	$12770 \cdot 6$	4-106213
			$14057 \quad 08 \cdot 535$	$121 \cdot 2$	914514.9 15643.0	2714308.9	Starvati	$2014 \cdot 2$	3-304113
					$1560643 \cdot 0$	$3360250 \cdot 4$	Scottie	$9151 \cdot 2$	3-961480

[^32]GEOGRAPHIC POSITIONS OF TRIANGULATION STATIONS-Continued.

[^33]GEOGRAPHIC POSITIONS OF TRIANGULATION STATIONS-Continued.

Station.	Elevat	on.	$\begin{gathered} \text { Latitude } \\ \text { and } \\ \text { longitude. } \end{gathered}$	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Logarithm.
Bear Mountain, ${ }^{1} 1909$. .	Meters.	Feet.	"		- , "	"		Meters.	
			$\begin{array}{rrr}620249 \cdot 38 \\ 141 & 5644 \cdot 13\end{array}$	1529 641	$\begin{array}{llll}331 & 55 & 27 \\ 352 & 06 & 39\end{array}$	$\begin{array}{lll}152 & 16 & 54 \\ 172 & 10 & 36\end{array}$	Black Eagle. Lime......... . . .	$45582 \cdot 2$ 28691.5	$\begin{aligned} & 4 \cdot 658795 \\ & 4 \cdot 457753 \end{aligned}$
Lava, 1909................ . .	$1826 \cdot 6$	$5993{ }^{2}$	$\begin{array}{rrr} 62 & 01 & 50 \cdot 089 \\ 141 & 04 & 41 \cdot 550 \end{array}$	$\begin{array}{r} 1550 \cdot 8 \\ 604 \cdot 2 \end{array}$	$\begin{array}{rrr}1 & 51 & 59 \cdot 9 \\ 33 & 59 & 53 \cdot 1\end{array}$	$\begin{array}{lll}181 & 51 & 21 \cdot 5 \\ 213 & 52 & 52.8\end{array}$	Sheep.	$19515 \cdot 7$ 12418.5	$4 \cdot 290384$ $4 \cdot 094068$
					$\begin{array}{ll}118 & 35 \\ 33 \cdot 6\end{array}$	$2982955 \cdot 1$	Joe.	6339.2	$3 \cdot 802037$
						$613504 \cdot 6$	Beaver	$6110 \cdot 8$	3.786101
					$2921556 \cdot 8$	$1122818 \cdot 0$	Hump	13209.2	$4 \cdot 120876$
					$\begin{array}{llll}342 & 55 & 16 \cdot 9\end{array}$	$1630126 \cdot 2$	Rabbit	20845-3	4-319009
Hump, 1909.	$1922 \cdot 3$	6307	$\begin{array}{rrr}6159 & 07.708 \\ 140 & 50\end{array}$	$238 \cdot 6$	$\begin{array}{llll}114 & 31 & 20 \cdot 5\end{array}$	$\begin{array}{llll}294 & 13 & 20.9\end{array}$	Joe.	$19522 \cdot 3$	$4 \cdot 290531$
			$1405042 \cdot 119$	$613 \cdot 3$	$\begin{array}{llll}139 & 20 & 12 \cdot 5 \\ 173 & 12 & 32 \cdot 6\end{array}$	$\begin{array}{llll}319 & 13 & 17 \cdot 6 \\ 353 & 11 & 06 \cdot 7\end{array}$	Beav Ed..	$10475 \cdot 2$ $11930 \cdot 1$	4.020162 4.076644
Wi-ki, 1909.	$2331 \cdot 9$	7651	$615617 \cdot 291$	$535 \cdot 2$	$\begin{array}{llll}185 & 47 & 05.4\end{array}$	$54827 \cdot 5$	Joe.	$13400 \cdot 4$	$4 \cdot 127119$
			$1411237 \cdot 649$	$549 \cdot 1$	$\begin{array}{llll}222 & 52 & 06 \cdot 1\end{array}$	$\begin{array}{llll}43 & 04 & 32 \cdot 8 \\ 74 & 46 & 3\end{array}$	Beaver	$18060 \cdot 8$	$4 \cdot 256736$
					$\begin{array}{llll}254 & 27 & 12 \cdot 2\end{array}$	$744633 \cdot 3$	Hump	$19885 \cdot 0$	$4 \cdot 298525$
Ted, ${ }^{1} 1909$	$1656 \cdot 4$	$5435{ }^{2}$	$615532 \cdot 46$	1005	960156	2754826	Wi-ki.	$13458 \cdot 2$	$4 \cdot 128987$
			$14057 \quad 20 \cdot 03$	292	2205917	410509	Hump	$8834 \cdot 5$	$3 \cdot 946181$
Wi-ki Ridge,west mesa, ${ }^{1} 1909$	$\ldots .$.	\ldots	$615458 \cdot 21$	1802	$\begin{array}{llll}317 & 07 & 09\end{array}$	1372034	Cache.	19653.4	4-293438
			$\begin{array}{llll}141 & 19 & 13.87\end{array}$	202	3475715	1680414	Cub	$33556 \cdot 2$	$4 \cdot 525773$
Wi-ki Ridge,east mesa, ${ }^{1} 1909$	\ldots	\ldots	$615455 \cdot 90$	1730	3183624	1384904	Cache	$19105 \cdot 6$	$4 \cdot 281161$
			$\begin{array}{llll}141 & 18 \quad 23 \cdot 35\end{array}$	341	3491050	$169 \quad 1704$	Cub	$33340 \cdot 0$	$4 \cdot 522965$
Peak west of Wi-ki, ${ }^{2} 1909 \ldots$	$\ldots .$.	\ldots	$61 \quad 5445 \cdot 79$	1417	3275214	1480104	Cache.	$16569 \cdot 5$	$4 \cdot 219310$
			$1411402 \cdot 67$	39	3554419	1754644	Cub	32529.2	$4 \cdot 512273$
Wi-ki Ridge,east peak, ${ }^{1} 1909$	\ldots	\cdots	$\begin{array}{llll}61 & 54 & 20.45\end{array}$	633	3061259	1263104	Cache	$22360 \cdot 5$	$4 \cdot 349482$
			$1412432 \cdot 26$	471	3394245	1595424	Cub	$33728 \cdot 3$	4-527994
Wi-ki Ridge,west peak, ${ }^{1} 1909$		\ldots	$615410 \cdot 14$	314	3051014	1252834	Cache	22379 - 6	4.349852
			$1412449 \cdot 57$	724	3390649	1591844	Cub	$33518 \cdot 4$	$4 \cdot 525283$
Sheep, 1909.	$1877 \cdot 8$	6161	$615120 \cdot 020$	619.7	$145 \quad 34 \quad 47 \cdot 2$	$325 \quad 28 \quad 25 \cdot 5$	Wi-ki.	11163 . 1	$4 \cdot 047783$
			$14105 \quad 25 \cdot 017$	$365 \cdot 8$	$\begin{array}{llll}221 & 33 & 30 \cdot 1 \\ 273 & 33 & 08 \cdot 6\end{array}$		Hump	19381.3 6770.7	$4 \cdot 287384$ 3.830634
Rabbit. 1909.	$1987 \cdot 4$	6520	$615106 \cdot 253$	193.6	$126 \quad 2943 \cdot 3$	$30616 \quad 34 \cdot 2$	Wi-ki.	16231.6	4.210361
			$1405742 \cdot 993$	628.9	$18957 \quad 27 \cdot 1$	$100212 \cdot 8$	Ed.	$27163 \cdot 2$	$4 \cdot 433981$
					$2022045 \cdot 0$	$222656 \cdot 3$	Hump	$16120 \cdot 7$	4-207384
Slide, 1909.	$1996 \cdot 4$	6550	$\begin{array}{lll}61 & 50 & 19.340\end{array}$	$598 \cdot 7$	$121 \quad 12 \quad 50 \cdot 4$	$3010943 \cdot 3$	Sheep.	$3627 \cdot 5$	3.559604
			$1410152 \cdot 883$	773.9	$248 \quad 18 \quad 12 \cdot 3$	$682152 \cdot 6$	Rabbit	$3933 \cdot 7$	3.594796
Center, 1909.	2064-8	6774	$6148 \quad 32 \cdot 073$	$992 \cdot 8$	$148 \quad 21 \quad 30 \cdot 5$	'328 19 27.2	Slide.	$3901 \cdot 2$	$3 \cdot 591199$
			$1405933 \cdot 017$	$483 \cdot 6$	$1983750 \cdot 5$	$183927 \cdot 5$	Rabbit	$5037 \cdot 3$	3.702198
Cache, 1909.	$1447 \cdot 1$	4748	$614712 \cdot 157$	$376 \cdot 3$	1555801.9	$3355026 \cdot 7$	Wi-ki.	$18486 \cdot 7$	4.266860
			$1410401 \cdot 447$	$21 \cdot 2$	$\begin{array}{llll}170 & 57 & 01 \cdot 0\end{array}$	$3505547 \cdot 3$	Sheep	$7770 \cdot 1$	3.890424
					$1975904 \cdot 0$	$\begin{array}{llll}18 & 00 & 57.4\end{array}$	Slide.	$6092 \cdot 8$	3.784820
					$2374747 \cdot 0$	$\begin{array}{lllllllllll}57 & 51\end{array}$	Center	$4646 \cdot 4$	3-667119
Flat Top, 1909.	1991.4	6534	$614705 \cdot 329$	$165 \cdot 0$	$1745027 \cdot 7$	$3544947 \cdot 2$	Rabbit	$7488 \cdot 7$	$3 \cdot 874406$
			$1405656 \cdot 954$	$834 \cdot 9$	$915951 \cdot 3$	$27153 \quad 37 \cdot 3$	Cache	$6225 \cdot 7$	3.794188
					$1393610 \cdot 3$	$3193352 \cdot 8$	Cent	$3527 \cdot 0$	3-547411
	$1306 \cdot 5$	$4287{ }^{3}$	614459.48	1842	2885104	1085445	White River, East		
			$1410256 \cdot 58$	830			Base.............	$3889 \cdot 3$	3-589872
					3200224	1400346	White River, West	$2125 \cdot 8$	3-327522
Harris, 1913.	$1340 \cdot 7$	4399	$614432 \cdot 206$	$997 \cdot 0$	$433140 \cdot 3$	$\begin{array}{llll}223 & 1605 \cdot 0\end{array}$	Dalton.	$22757 \cdot 8$	4-357131
			$1404358 \cdot 338$	$856 \cdot 3$	744617.4 3574431.8	$\begin{array}{llll}254 & 33 & 37.3 \\ 177 & 35 & 01.8\end{array}$	Kletsan	13142.4 11875.3	$4 \cdot 118673$ $4 \cdot 074644$
White River, East Base, 1909	$876 \cdot 2$	2875	614418.818	$582 \cdot 5$	$13915 \quad 14 \cdot 2$	$31910 \quad 36 \cdot 2$	Cache	$7086 \cdot 9$	3.850457
			$1405845 \cdot 858$	$673 \cdot 3$	$1971221 \cdot 7$	1713 57-6	Flap Top........	$5396 \cdot 5$	$3 \cdot 732113$
White River, West, Base, 1909	$891 \cdot 5$	2925	61 141406.832	211.5	$\begin{array}{llll}158 & 02 & 18 \cdot 1\end{array}$	$3375959 \cdot 1$	Cache...	$6186 \cdot 8$	$3 \cdot 791464$
			$1410123 \cdot 590$	$346 \cdot 4$	$\begin{array}{lll}215 & 15 & 41 \cdot 5 \\ 260 & 52 & 39 \cdot 2\end{array}$	$\begin{array}{llll}35 & 19 & 36 \cdot 4 \\ 80 & 54 & 58 \cdot 1\end{array}$	Flat Top............	$6770 \cdot 0$	$3 \cdot 830590$
					$2605239 \cdot 2$	$805458 \cdot 1$	Base...	$2345 \cdot 2$	$3 \cdot 370180$
Little Boundary, 1909......	$1406 \cdot 0$	4613	$614245 \cdot 724$ 140 56	$1415 \cdot 6$	$8813656 \cdot 0$	$\begin{array}{llll}261 & 35 & 43 \cdot 2\end{array}$	Kletsan............	$1227 \cdot 2$	$3 \cdot 088926$
			$1405658 \cdot 747$	$863 \cdot 1$	$1225227 \cdot 1$	$3024833 \cdot 9$	White River, West Base...	$4629 \cdot 8$	$3 \cdot 665559$
					$1512305 \cdot 9$	$3312131 \cdot 6$	White River, East		

[^34]GEOGRAPHIC POSITIONS OF TRIANGULATION STATIONS-Continued.

Station.	Elevat	ion.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Logarithm.
Kletsan, 1909............... . .	Meters.$1431 \cdot 9$	$\begin{aligned} & \text { Feet. } . \\ & 4698 \end{aligned}$	- , "	$\begin{array}{r} 1236 \cdot 3 \\ 314 \cdot 1 \end{array}$	- ' $"$	- , "		Meters.	
			614239.937 1405821.377		$13510 \quad 07 \cdot 8$	$31507 \quad 27.4$	White River, West Base.	$3794 \cdot 5$	$3 \cdot 579157$
					$\begin{array}{llll}149 & 24 & 24 \cdot 6\end{array}$	$\begin{array}{llll}329 & 19 & 25 \cdot 1\end{array}$	Cache............	9794.0	3.990958
Traver, 1909..............					1731813	$3531752 \cdot 1$	Base.	$3082 \cdot 1$	3.488842
	$1102 \cdot 0$	$3616{ }^{*}$	$\begin{array}{rrr}61 & 42 & 11 \cdot 712 \\ 141 & 07 & 53 \cdot 231\end{array}$	$\begin{aligned} & 362 \cdot 6 \\ & 782 \cdot 3 \end{aligned}$	$2635938 \cdot 6$	$840802 \cdot 2$	Kletsan	$8448 \cdot 8$	3.926794
					$1705945 \cdot 1$	$350 \quad 55 \quad 34 \cdot 4$	Wi-ki.	26505.8	4.423341
					$\begin{array}{lllll}200 & 03 & 45 \cdot 0\end{array}$	$\begin{array}{llll}20 & 07 & 09 \cdot 2\end{array}$	Cache	9903.4	3.995785
					2263453.6	46 5 $4431 \cdot 6$	Flat Top............	$13244 \cdot 0$	$4 \cdot 122019$
					238 2029.5	$\begin{array}{llll}58 & 08 & 22 \cdot 7\end{array}$	White River, West Base. .	$6742 \cdot 4$	$3 \cdot 828813$
					$2435122 \cdot 8$	$635924 \cdot 9$	White River, East Base..	8951 - 3	3.951887
Signal on Boundary, ${ }^{1} 1909$.	\ldots	\ldots	$\begin{array}{rrr}61 & 39 & 13 \cdot 05 \\ 141 & 00 & 18 \cdot 17\end{array}$	404 267	$\begin{array}{llll}129 & 37 & 22 \\ 194 & 59 & 57\end{array}$	$\begin{array}{rrr}309 & 30 & 41 \\ 15 & 01 & 39\end{array}$	Traver	$8682 \cdot 8$ 6630.9	$\begin{aligned} & 3 \cdot 938660 \\ & 3 \cdot 821571 \end{aligned}$
Blank Peak, ${ }^{1} 1909$.	$2769 \cdot 6$	9087	$\begin{array}{llll}61 & 38 & 50 \cdot 85\end{array}$	1574	1263640	3062851	Bend	$9755 \cdot 0$	3.989228
			$\begin{array}{llll}141 & 34 & 57 \cdot 80\end{array}$	851	1593231	3392637	Solo	$16866 \cdot 6$	$4 \cdot 227027$
	$1276 \cdot 2$	4187	$613837 \cdot 46$	1160	1452117	3251642	Traver	$8065 \cdot 8$	3.906649
			$\begin{array}{llll}141 & 02 & 41 \cdot 24\end{array}$	607	2065715	270104	Kletsan	$8423 \cdot 5$	3.925494
East Flag, ${ }^{1} 1909$.	$1243 \cdot 4$	4080	$\begin{array}{llll}61 & 38 & 34 \cdot 14\end{array}$	1057	1301228	3100430°	Traver	10447.7	$4 \cdot 019019$
			$14058 \quad 50 \cdot 33$	741	1831201	31226	Kletsan	$7621 \cdot 0$	$3 \cdot 882013$
Jenerk, 1913............... .	$1450 \cdot 0$	4757	613808.935	$276 \cdot 6$	740101.0	$2534456 \cdot 2$	Dalton.	16827.0	4-226006
			$1404324 \cdot 231$	$356 \cdot 9$	$1223304 \cdot 6$	$3021954 \cdot 9$	Kletsan.	$15638 \cdot 7$	$4 \cdot 194200$
Scoria, 1909................ .	$1327 \cdot 8$	4356	$6137 \quad 55 \cdot 855$	1729.0	$125 \quad 2707-4$	$30515 \quad 59.7$	Traver	$13686 \cdot 4$	$4 \cdot 136290$
			$1405514 \cdot 641$	$215 \cdot 7$	$1624026 \cdot 9$	$3423742 \cdot 5$	Kletsan	9213 - 3	$3 \cdot 964414$
Cub, 1909.................	$1756 \cdot 3$	5762	$6137 \quad 17 \cdot 874$	$553 \cdot 3$	$1982128 \cdot 0$	$18 \quad 2428 \cdot 8$	Traver	9585.3	3.981604
			$1411118 \cdot 638$	$274 \cdot 7$	$\begin{array}{lllllllllllll}199 & 11 & 54 \cdot 8\end{array}$	$1 \begin{array}{lll}19 & 18 & 19 \cdot 7\end{array}$	Cache.	$19486 \cdot 6$	$4 \cdot 289737$
					$\begin{array}{llll}228 & 49 & 32 \cdot 9\end{array}$	490057.0	Kletsan	$15172 \cdot 5$	$4 \cdot 181057$
					$\begin{array}{lllll}265 & 08 & 59 \cdot 6\end{array}$	$85 \quad 23 \quad 07 \cdot 8$	Scoria.	14251.4	4-153858
Dalton, 1909........	2017 -8	6620	$\begin{array}{llll}61 & 35 & 38 \cdot 037\end{array}$	1177.5	$\begin{array}{llll}155 & 49 & 59.4\end{array}$	$33544 \cdot 31 \cdot 8$	Traver	$13362 \cdot 1$	4-125875
			$1410141 \cdot 021$	$605 \cdot 1$	$\begin{array}{lllllllllllllll}174 & 31 & 42 \cdot 6\end{array}$	$\begin{array}{llll}354 & 29 & 38 \cdot 9\end{array}$	Cache.	$21586 \cdot 4$	4.334181
					$1 \begin{array}{llll}192 & 39 & 27 \cdot 4\end{array}$	$124223 \cdot 1$	Kletsan	13387.0	4. 126684
					$2330656 \cdot 8$	$531236 \cdot 8$	Scoria.	$7115 \cdot 9$	$3 \cdot 852232$
	$1800 \cdot 2$	5906	$613322 \cdot 01$	$681 \cdot 3$	1070438	2864951	Monument No. 187A.	$15567 \cdot 5$	$4 \cdot 192218$
			$1404310 \cdot 95$	$161 \cdot 7$	1154838	2953350	Monument No. 187..	$16517 \cdot 6$	$4 \cdot 217947$
Natazhat, ${ }^{1}$ 5th peak west of, 1909.	$3097 \cdot 7$	10163	$\begin{array}{llll}61 & 32 & 32 \cdot 30\end{array}$	1000	1524431	3323850	Holmes.	$12460 \cdot 5$	4-095534
			$1411743 \cdot 30$	640	1740455	3540245	Ping Pong	$21138 \cdot 5$	4-325074
Natazhat, ${ }^{1} 4$ th peak west of 1909.	$3140 \cdot 7$	10304	$\begin{array}{lll}61 & 32 & 15 \cdot 16\end{array}$	469	1484107	3283405	Holmes.	13589.4	$4 \cdot 133201$
			$14116 \quad 11 \cdot 22$	166	1704146	3503815	Ping Pong.	21844.8	4.339349
Natazhat, ${ }^{1} 3$ rd peak west of, 1909.	$3287 \cdot 0$	10784	613137.91	1174	1475104	3274305	Holmes.	15076.9	$4 \cdot 178312$
			$1411506 \cdot 04$	89	1684914	3484445	Ping Pong.	23151-2	$4 \cdot 364573$
Natazhat, ${ }^{1}$ 2nd peak west of, 1909.	3602 - 4	11819	$613124 \cdot 39$	755	1414312	3213250	Holmes.	$16802 \cdot 7$	4-225378
			1411223.98	354	1632751	3432100	Ping Pong.	$24132 \cdot 3$	$4 \cdot 382598$
Natazhat, black rock between peaks, 1909.	4052 -0	13294	613118.950	$586 \cdot 6$	$\begin{array}{llll}155 & 46 & 22 \cdot 6\end{array}$	$3354124 \cdot 1$	Cub..		4.085927
			$14105 \quad 39 \cdot 239$	$580 \cdot 2$	$\begin{array}{lll}174 & 26 & 02 \cdot 1 \\ 106 & 58 & 01\end{array}$	$\begin{array}{llll}354 & 24 & 04 \cdot 2\end{array}$	Traver.	$20303 \cdot 2$	4.307565
					$\begin{array}{llll}196 & 58 & 01 \cdot 8 \\ 220 & 56 & 00 \cdot 8\end{array}$	17 41 $0427 \cdot 0$	Kletsan	$22046 \cdot 3$	4.343336
					22056 00•8	$410059 \cdot 0$	Z of the Boundary	$7641 \cdot 6$	$3 \cdot 883186$
Cloud, 1913...............	$3740 \cdot 0$	12270	$\begin{array}{lll}61 & 31 & 17.51\end{array}$	$542 \cdot 0$	1994817	195553	Kletsan........	$22462 \cdot 2$	4.35145
			$1410659 \cdot 34$	$877 \cdot 2$	$1210 \cdot 11$ 219 25	$30 \cdot 1625$ 39 5	Dalton. Harris......	$9334 \cdot 7$ 31922.8	$3 \cdot 97010$ $4 \cdot 50410$
Naţazhat, West Peak, 1913..	$4096 \cdot 8$	13441	$613117 \cdot 13$	$530 \cdot 3$	2054111	254502	Dalton.	$8964 \cdot 7$	3.95253
			$1410604 \cdot 47$	$66 \cdot 1$	$\begin{array}{llll}218 & 16 \\ 237 & 24 & 52\end{array}$	383606 57 74	Harris.	31422.9 23778.0	4.49725 4.37618
Mount Lambart, 1909......	$3269 \cdot 0$	10725	$6131 \quad 16 \cdot 956$	524.9	$1404431 \cdot 7$	$\begin{array}{llll}320 & 25 & 25 \cdot 3\end{array}$	Ping Pong......... .	$30234 \cdot 3$	$4 \cdot 480500$
			$1405828 \cdot 752$	$425 \cdot 1$	$1604003 \cdot 9$	$3403714 \cdot 8$	Dalton...........	8566.1	3.932784
					$1665945 \cdot 8$	$34658 \quad 25 \cdot 6$	Z of the Boundary...	5984-8	3.777051
Natazhat, East Peak, 1913..	$4095 \cdot 0$	13435	$6131 \begin{array}{lll}616 \cdot 24\end{array}$	$502 \cdot 7$	2020249	220505	Dalton.	$8745 \cdot 4$	3.94178
			$14105 \quad 23 \cdot 59$	$348 \cdot 7$	$\begin{array}{llll}217 & 22 & 51 \\ 236 & 33 & 57\end{array}$	37 56 51	Harris......	$31074 \cdot 0$	$4 \cdot 49240$
					2363357	$56 \quad 53 \quad 17$	Jenerk	$23286 \cdot 3$	$4 \cdot 36710$
Natazhat, ${ }^{1}$ 1st peak west of,	$3750 \cdot 4$	12305	$613111 \cdot 30$	350	1375932	3174720	Holmes.	$18304 \cdot 5$	$4 \cdot 262557$
			1411018.99	281	1594241	3393400	Ping Pong.	$25100 \cdot 9$	$4 \cdot 399689$

[^35]GEOGRAPHIC POSITIONS OF TRIANGULATION STATIONS—Continued.

Station.	Elevat	ion.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Logarithm.
Mount Riggs, 1913.	Meters.	Feet.	- , "		- , "	- , "		Meters.	
	3591 - 5	11783	$613040 \cdot 08$1410159.76	$\begin{array}{r} 1240 \cdot 7 \\ 883 \cdot 7 \end{array}$	1814258	14316	Dalton	9227.5	3.96508
					2113621	315214	Harris	30288.5	$4 \cdot 48128$
					2294204	495826	Jenerk	$21543 \cdot 2$	$4 \cdot 33331$
					$\begin{array}{llll}272 & 10 & 08 \\ 336 & 47 & 56\end{array}$	922429 1565210	Klutla	$14494 \cdot 0$ 10846.9	$4 \cdot 16119$ 4.03530
					$337 \quad 5012$	$\begin{array}{llll}157 & 51 & 57\end{array}$	Bald	108465.5	$3 \cdot 67261$
Klutlan, 1913..............	$2629 \cdot 9$	8628	$613021 \cdot 385$	$662 \cdot 0$	984209.7	278 30-54.6	Lambart, Mt.	11488.0	4.060245
			$1404540 \cdot 527$	$599 \cdot 4$	$\begin{array}{llll}187 & 53 & 47 \cdot 1 \\ 124 & 45 & 35.9\end{array}$	$75547 \cdot 0$ 3043131.5	Jenerk....	14612.5 17243.4	$4 \cdot 164725$ 4.236624
Mount Brooke, ${ }^{1} 1913 . \ldots . .$. .	$3289 \cdot 1$	10791	$61 \quad 2938 \cdot 63$	$1195 \cdot 8$	2623801	824817	Klutlan	$10443 \cdot 2$	$4 \cdot 01883$
			$14057 \quad 20 \cdot 76$	$307 \cdot 2$	434906	2234646	Bald	$3402 \cdot 8$	$3 \cdot 53183$
Crag, 1913..	$2792 \cdot 6$	9162	$61 \quad 25 \quad 17.931$	$555 \cdot 1$	$17408 \quad 55 \cdot 3$	$354 \quad 07 \cdot 47 \cdot 6$	Lambart, Mt	11171.6	$4 \cdot 048114$
			$1405711 \cdot 627$	$172 \cdot 4$	$2272221 \cdot 1$	$473228 \cdot 2$	Klutlan.	$13892 \cdot 7$	4.142788
Gable, ${ }^{1} 1913$.	$4765 \cdot 2$	10791	$\begin{array}{llll}61 & 25 & 06 \cdot 55\end{array}$	$202 \cdot 8$	2300524	504433	Kletsan	$51172 \cdot 8$	$4 \cdot 70904$
			$1414252 \cdot 86$	$784 \cdot 1$	2345326	554514	Harris	$63418 \cdot 2$	$4 \cdot 80221$
Bo, 1913.	$2739 \cdot 2$	8987	$612445 \cdot 577$	$1410 \cdot 8$	$973105 \cdot 4$	$2772332 \cdot 3$	Crag	$7718 \cdot 8$	$3 \cdot 887549$
			$1404835 \cdot 645$	$528 \cdot 8$	$1935924 \cdot 8$	$\begin{array}{llll}14 & 0158.6\end{array}$	Klutlan.	$10713 \cdot 8$	$4 \cdot 029945$
					$1440759 \cdot 2$	$3235918 \cdot 2$	Lambart, Mt.	14963 - 0	$4 \cdot 175020$
West Curtain Peak, ${ }^{1} 1913 .$.	$2730 \cdot 6$	8959	$61 \quad 24 \quad 38.95$	1205.4	1481138	$\begin{array}{ll}328 & 0507\end{array}$	Klutlan	$12480 \cdot 8$	$4 \cdot 09624$
			$\begin{array}{llll}140 & 38 & 15.79\end{array}$	$234 \cdot 3$	1694353	3493922	Jenerk	25485 - 0	$4 \cdot 40628$
Middle Curtain Peak, 1913	$3056 \cdot 2$	10027	$\begin{array}{llll}61 & 24 & 16 \cdot 48\end{array}$	$510 \cdot 1$	1094434	2892341	Bald	$22440 \cdot 7$	$4 \cdot 35104$
			$\begin{array}{llll}140 & 36 \quad 13.40\end{array}$	$198 \cdot 8$	1432530	3231718	Klutlan	$14077 \cdot 8$	$4 \cdot 14854$
					1661007	3460350	Jenerk.	26544.6	4.42398
Mount Constantine, ${ }^{2}$ 1913..	$3137 \cdot 3$	10294	$612429 \cdot 0$	$898 \cdot 7$	922548.9	2721322.8	Bo.	$12616 \cdot 2$	$4 \cdot 100929$
			$14034 \quad 26 \cdot 0$	$385 \cdot 5$	$943619 \cdot 3$	$27416 \quad 20 \cdot 1$	Crag..	20319 - 4	4-307911
Mount Strickland, ${ }^{1} 1913 . . .$.	$4211 \cdot 7$	13818	$\begin{array}{llll}61 & 14 & 29 \cdot 29\end{array}$	$906 \cdot 6$	470545	2263304	Eck.	46024	4.66298
			$14045 \quad 14 \cdot 74$	$220 \cdot 0$	484813	2280940	Bud	52903	$4 \cdot 72348$
Mount Wood, 1913.........	$4841 \cdot 6$	15885	$\begin{array}{llll}61 \quad 13 & 56 \cdot 17\end{array}$	$1738 \cdot 7$	1354559	3152011	Bald.	$37425 \cdot 1$	$4 \cdot 57317$
			$140 \quad 30 \quad 36 \cdot 67$	$547 \cdot 1$	1552429	3350008	Kletsan	58778.0	$4 \cdot 76922$
					1562048	3360735	Klutlan	$33322 \cdot 5$	$4 \cdot 52274$
					1681822	3480641	Harris	$58060 \cdot 8$	$4 \cdot 76388$
Mount Steele, ${ }^{1} 1913$.	5073-1	16644	$6105 \quad 32 \cdot 57$	$1008 \cdot 2$	1522859	3320513	Klutlan	52057.9	4.71649
			$14018 \quad 34 \cdot 43$	$516 \cdot 0$	1625108	3422850	Harris	75868.9	$4 \cdot 88006$
Ping Pong, 1909........... .	$1333 \cdot 2$	4374	$6143 \quad 51 \cdot 491$	1593.9	$\begin{array}{llll}285 & 48 & 07 \cdot 4\end{array}$	$10558 \quad 57 \cdot 7$	Traver	$11280 \cdot 0$	$4 \cdot 052308$
			$1412011 \cdot 728$	$172 \cdot 3$	$3125533 \cdot 0$	$\begin{array}{lllllllllllll}133 & 11 & 50 \cdot 5\end{array}$	Dalton	$22372 \cdot 3$	$4 \cdot 349710$
					$3271016 \cdot 9$	$1471806 \cdot 1$	Cub	$14490 \cdot 2$	$4 \cdot 161073$
					$192907 \cdot 5$	$1992537 \cdot 0$	Holmes	10555.9	$4 \cdot 023494$
					$\begin{array}{llllll}246 & 18 & 17.4\end{array}$	$663232 \cdot 1$	Cache....	15531.0	$4 \cdot 191198$
					$2681311 \cdot 0$	$882944 \cdot 5$	White River, W. Base	16571 - 0	$4 \cdot 219349$
Holmes Creek, ${ }^{1}$ 1st peak west of, 1909	\ldots	613538.56 141 22	1194	1641919 187	3441750	Holmes..	$5511 \cdot 7$ 15393.9	3.741283 4.187348
			$1 \begin{array}{ll}141 \quad 22 \quad 29.69\end{array}$	438	1873343	73545	Ping Pong.	15393.9	4-187348
Holmes Creek, ${ }^{1}$ 2nd peak west of, 1909.	2579.2	8462	$\begin{array}{llll}61 & 35 \quad 37 \cdot 42\end{array}$	1158	1762410	3562350	Holmes.	$5352 \cdot 1$	$3 \cdot 728522$
			$1412348 \cdot 03$	708	1914349	114700	Ping Pong.	$15622 \cdot 3$	4-193746
Holmes, 1909.............. .	\$741.1	5712	613829.971	$927 \cdot 8$	$22733 \quad 24 \cdot 3$	$475109 \cdot 2$	Cache.	24021.0	$4 \cdot 380591$
			$1412410 \cdot 830$	$159 \cdot 6$	$\begin{array}{llll}244 & 21 & 58.9 \\ 281 & 00 & 22.3\end{array}$	$\begin{array}{r}643619.4 \\ \hline 1011141.7\end{array}$	Traver	15936.2	$4 \cdot 202385$
Burnt Hill, 1909........... .	$1332 \cdot 4$	4043	$614606 \cdot 155$	$190 \cdot 5$	$2970742 \cdot 8$	$1171549 \cdot 8$	Ping Pong.	$9121 \cdot 2$	3.960053
			$1412924 \cdot 565$	$360 \cdot 2$	$3415248 \cdot 2$	$\begin{array}{llll}161 & 57 & 24 \cdot 4\end{array}$	Holmes.	$14855 \cdot 5$	$4 \cdot 171887$
					$160406 \cdot 5$	$1960127 \cdot 3$	Black Eagle	$9602 \cdot 2$	3.982371
					$\begin{array}{llll}264 & 35 & 09.4\end{array}$	$845731 \cdot 3$	Cache.	22424-7	$4 \cdot 350726$
					$2904721 \cdot 3$	$1110618 \cdot 6$	Traver	$20300 \cdot 4$	$4 \cdot 307504$
Black Eagle, 1909.......... .	$1645 \cdot 4$	5398	614108.057	249.4	$244 \quad 46 \quad 03 \cdot 1$	$645649 \cdot 0$	Ping Pong.	11907.8	$4 \cdot 075831$
			$1413225 \cdot 299$	$372 \cdot 0$	$2904544 \cdot 4$	$\begin{array}{llll}111 & 04 & 09 \cdot 1\end{array}$	Cub......	19961 -1	$4 \cdot 300185$
					$3035143 \cdot 2$	1235858.4	Holmes	$8769 \cdot 1$	3.942954
Mount Sulzer, 1913.	$3330 \cdot 1$	10926	$\begin{array}{lll}61 & 37 & 28.95\end{array}$	$896 \cdot 2$	2534840	742221	Kletsan	$35123 \cdot 0$	4.54559
			$1413637 \cdot 04$	$545 \cdot 8$	$\begin{array}{lll}253 & 51 & 44 \\ 268 & 06 & 08\end{array}$	743805 88 88	Harris	$48265 \cdot 1$	4.68363
					2680608	885258	Jenerk	$47051 \cdot 4$	$4 \cdot 67257$
Solo, 1909.	$1478 \cdot 6$	4851	$6147 \quad 21 \cdot 175$	$655 \cdot 5$	$\begin{array}{lllllll}282 & 03 & 51 \cdot 9\end{array}$	$1021440 \cdot 0$	Burnt Hill.	$11030 \cdot 1$	$4 \cdot 042579$
			$1414140 \cdot 039$	$586 \cdot 8$	$2884751 \cdot 3$	$\begin{array}{llll}109 & 06 & 46 \cdot 3\end{array}$	Ping Pong.	$19983 \cdot 1$	$4 \cdot 300662$
					$3244442 \cdot 1$	$\begin{array}{lll}144 & 52 & 50 \cdot 8\end{array}$	Black Eagle	$14132 \cdot 9$	$4 \cdot 150230$
					$105211 \cdot 2$	$1905016 \cdot 3$	Bend.	$10170 \cdot 9$	4.007358
					$27012 \quad 24 \cdot 1$	$9045 \quad 34 \cdot 3$	Cache	$33104 \cdot 6$	4.519888
Whitey, 1909.	$3130 \cdot 5$	10271	$\begin{array}{llll}61 & 35 & 26 \cdot 18\end{array}$	810	1592521	3391948	End.	15842 . 0	4.199809
			14143 57-43	847	1802844	02850	Bend	$12145 \cdot 0$	$4 \cdot 084398$
					1851153	51354	Solo.	22225-5	4.346852

[^36]GEOGRAPHIC POSITIONS OF TRIANGULATION STATIONS-Continued.

Station.	Elevat	tion.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Logarithm.
	Meters.	Feet.	- ,		- , '	, "		Meters.	
Bend, 1909.	1929.7	6331	$\begin{array}{rrr}61 & 41 & 58 \cdot 500 \\ 141 & 43 & 50 \cdot 527\end{array}$	1810.9 742.6	$\begin{array}{lll}238 & 48 & 17 \cdot 5 \\ 278 & 43 & 37 \cdot 4\end{array}$	$\begin{array}{lll}59 & 01 & 00 \cdot 2 \\ 98 & 53 & 40 \cdot 7\end{array}$	Burnt Hill. Black Eagle.	14846.9 $10194 \cdot 6$	$\begin{aligned} & 4 \cdot 171637 \\ & 4 \cdot 008370 \end{aligned}$
Mount Bona, 1913.	$5005 \cdot 2$	16421	$612303 \cdot 16$ $1414504 \cdot 22$	$97 \cdot 8$ $62 \cdot 7$	$\begin{array}{llll}228 & 18 & 51 \\ 233 & 09 & 08 \\ 255 & 09 & 37\end{array}$	$\begin{array}{lll}48 & 59 & 55 \\ 54 & 02 & 51 \\ 76 & 01 & 47\end{array}$	Kletsan. Harris. Klutlan		$\begin{aligned} & 4 \cdot 74150 \\ & 4 \cdot 82763 \\ & 4 \cdot 73661 \end{aligned}$
Moraine Creek, end of first ridge north of, 1909	2052-5	6734	613950.155 1414519.782	$1552 \cdot 6$ 291.1	$\begin{array}{lll}146 & 47 & 24 \cdot 1 \\ 192 & 59 & 15 \cdot 6 \\ 198 & 16 & 20 \cdot 6\end{array}$	$\begin{array}{rrr}326 & 43 & 02 \cdot 8 \\ 13 & 02 & 29 \cdot 0 \\ 18 & 17 & 39 \cdot 2\end{array}$	End. Solo. Bend	7957.7 $14330 \cdot 1$ 4184.3	$\begin{aligned} & 3 \cdot 900789 \\ & 4 \cdot 156249 \\ & 3 \cdot 621626 \end{aligned}$
Peak No. 3, 1909.	$2873 \cdot 9$	9429	$\begin{array}{rrr} 61 & 35 & 39 \cdot 846 \\ 141 & 46 & 12 \cdot 631 \end{array}$	$\begin{array}{r} 1233.4 \\ 186 \cdot 3 \end{array}$	$\begin{array}{lll} 166 & 02 & 07 \cdot 0 \\ 190 & 06 & 11 \cdot 4 \\ 190 & 25 & 32 \cdot 3 \end{array}$	$\begin{array}{rrr} 345 & 58 & 32 \cdot 3 \\ 10 & 08 & 16 \cdot 4 \\ 10 & 29 & 32 \cdot 2 \end{array}$	End. Bend Solo.	$\begin{aligned} & 14844 \cdot 5 \\ & 11907 \cdot 0 \\ & 22077 \cdot 4 \end{aligned}$	$\begin{aligned} & 4 \cdot 171564 \\ & 4 \cdot 075801 \\ & 4 \cdot 343949 \end{aligned}$
Peak No. 1, 1909	2531-8	8307	$613714 \cdot 796$ $1414754 \cdot 860$	$458 \cdot 0$ $808 \cdot 5$	$\begin{array}{rrr} 69 & 35 & 39 \cdot 5 \\ 196 & 18 & 30 \cdot 3 \\ 202 & 14 & 12 \cdot 6 \end{array}$	$\begin{array}{rrr} 249 & 32 & 34 \cdot 0 \\ 16 & 24 & 00 \cdot 3 \\ 22 & 17 & 47 \cdot 6 \end{array}$	Skolai Solo. Bend.	$\begin{array}{r} 3316 \cdot 0 \\ 19562 \cdot 8 \\ 9490 \cdot 1 \end{array}$	$\begin{aligned} & 3 \cdot 520619 \\ & 4 \cdot 291432 \\ & 3 \cdot 977270 \end{aligned}$
Glacier, northeast end of, 1909	1251 - 4	4106	$\begin{array}{rrr} 61 & 41 & 20 \cdot 652 \\ 141 & 48 & 08 \cdot 463 \end{array}$	$\begin{aligned} & 639 \cdot 3 \\ & 124 \cdot 4 \end{aligned}$	$\begin{array}{lll} 153 & 59 & 08 \cdot 7 \\ 207 & 00 & 55 \cdot 1 \\ 252 & 47 & 53 \cdot 6 \end{array}$	$\begin{array}{rrrr}333 & 57 & 15 \cdot 9 \\ 27 & 06 & 37 \cdot 2 \\ 72 & 51 & 40 \cdot 7\end{array}$	End. Solo. Bend	$\begin{array}{r} 4288 \cdot 8 \\ 12532 \cdot 8 \\ 3968 \cdot 9 \end{array}$	$\begin{aligned} & 3 \cdot 632338 \\ & 4 \cdot 098049 \\ & 3 \cdot 598666 \end{aligned}$
Peak No. 5, 1909	$2528 \cdot 3$	8295	613613.37 1414936.63	414 540	$\begin{array}{lll} 114 & 50 & 40 \\ 177 & 29 & 22 \end{array}$	29449 357 28	Skolai End.	$\begin{array}{r} 1771.6 \\ 13379.0 \end{array}$	$\begin{aligned} & 3 \cdot 248373 \\ & 4 \cdot 126425 \end{aligned}$
End, 1909.	1929 - 1	6329	$\begin{array}{r}6143 \\ 14150 \\ \hline 16 \cdot 536\end{array}$	$\begin{aligned} & 778 \cdot 3 \\ & 242 \cdot 8 \end{aligned}$	$\begin{array}{lll} 167 & 07 & 21 \cdot 5 \\ 225 & 58 & 48 \cdot 9 \\ 295 & 15 & 44 \cdot 5 \end{array}$	$\begin{array}{rrr} 347 & 05 & 36 \cdot 8 \\ 46 & 06 & 23 \cdot 8 \\ 115 & 21 & 24 \cdot 4 \end{array}$	Lime Solo. Bend	$\begin{array}{r} 7816 \cdot 5 \\ 10526 \cdot 8 \\ 6273.9 \end{array}$	$\begin{aligned} & 3 \cdot 893011 \\ & 4 \cdot 022296 \\ & 3 \cdot 797535 \end{aligned}$
Skolai, 1909.	$1829 \cdot 5$	6002	$\begin{array}{rrr} 6136 & 37 \cdot 401 \\ 141 & 51 & 25 \cdot 695 \end{array}$	$\begin{array}{r} 1157.8 \\ 378.8 \end{array}$	$\begin{array}{lll}184 & 36 & 03 \cdot 2 \\ 203 & 17 & 25 \cdot 5 \\ 213 & 55 & 34 \cdot 5\end{array}$	$\begin{array}{rrr} 4 & 37 & 04 \cdot 1 \\ 23 & 26 & 01 \cdot 1 \\ 34 & 02 & 15 \cdot 1 \end{array}$	End. Solo. Bend	$\begin{aligned} & 12663 \cdot 1 \\ & 21708 \cdot 7 \\ & 11987 \cdot 3 \end{aligned}$	$\begin{aligned} & 4 \cdot 102540 \\ & 4 \cdot 336633 \\ & 4 \cdot 078720 \end{aligned}$
Russell (U.S.G.S, 'Y")1912	$2292 \cdot 8$	7522	$614130 \cdot 181$ 1415153.403	934.3	$\begin{array}{lll} 201 & 47 & 19 \cdot 3 \\ 219 & 34 & 18 \cdot 5 \\ 262 & 54 & 02 \cdot 9 \\ 357 & 25 & 10 \cdot 6 \end{array}$	$\begin{array}{rrrr}21 & 48 & 44 \cdot 6 \\ 39 & 43 & 18 \cdot 7 \\ 83 & 01 & 08 \cdot 1 \\ 177 & 25 & 35 \cdot 0\end{array}$	End. . Solo. Bend. Skolai	$\begin{array}{r} 3832 \cdot 9 \\ 14111 \cdot 3 \\ 7152 \cdot 5 \\ 9072 \cdot 5 \end{array}$	$\begin{aligned} & 3 \cdot 583528 \\ & 4 \cdot 149566 \\ & 3 \cdot 854458 \\ & 3 \cdot 957729 \end{aligned}$
U.S.G.S. " Z " east peak, 1909	$2444 \cdot 3$	8019	$\begin{array}{rrr} 61 & 42 & 26 \cdot 542 \\ 141 & 52 & 12 \cdot 116 \end{array}$	$\begin{aligned} & 821 \cdot 6 \\ & 178 \cdot 1 \end{aligned}$	223 05 $36 \cdot 1$ 225 24 $22 \cdot 3$ 247 47 $25 \cdot 2$ 257 52 $26 \cdot 1$ 259 32 $10 \cdot 9$ 276 39 $17 \cdot 3$	$\begin{array}{llll}43 & 07 & 17 \cdot 9 \\ 45 & 33 & 39 \cdot 0 \\ 68 & 28 & 38 \cdot 5 \\ 78 & 34 & 52 \cdot 2 \\ 80 & 20 & 50 \cdot 7 \\ 96 & 46 & 38 \cdot 9\end{array}$	End. Solo. Sheep. Cache Flat Top Bend.	$\begin{array}{r} 2484 \cdot 7 \\ 13009 \cdot 0 \\ 44341 \cdot 5 \\ 43335 \cdot 3 \\ 49414 \cdot 1 \\ 7422 \cdot 7 \end{array}$	$\begin{aligned} & 3 \cdot 395281 \\ & 4 \cdot 114245 \\ & 4 \cdot 646810 \\ & 4 \cdot 636842 \\ & 4 \cdot 693851 \\ & 3 \cdot 870564 \end{aligned}$
$\underset{1909}{\text { U.S.G.S " } Z \text { " west peak, }}$	$2460 \cdot 8$	8073	$614225 \cdot 129$ $1415227 \cdot 742$	$\begin{aligned} & 777.9 \\ & 407.7 \end{aligned}$	225 58 $00 \cdot 4$ 226 02 $23 \cdot 9$ 247 50 $45 \cdot 8$ 257 52 $38 \cdot 3$ 276 07 $33 \cdot 3$	$\begin{array}{llll}46 & 07 & 30 \cdot 8 \\ 46 & 04 & 19 \cdot 4 \\ 68 & 32 & 12 \cdot 8 \\ 78 & 35 & 18 \cdot 1 \\ 96 & 15 & 08 \cdot 7\end{array}$	Solo. End. Sheep Cache Bend.	$\begin{array}{r} 13203 \cdot 9 \\ 2677 \cdot 1 \\ 44570 \cdot 4 \\ 43568 \cdot 9 \\ 7646 \cdot 1 \end{array}$	$\begin{aligned} & 4 \cdot 120703 \\ & 3 \cdot 427668 \\ & 4 \cdot 649047 \\ & 4 \cdot 639177 \\ & 3 \cdot 883438 \end{aligned}$
Lime, 1909	$2156 \cdot 3$	7074	61 47 $31 \cdot 274$ 141 52 15.406	$\begin{aligned} & 968 \cdot 1 \\ & 225 \cdot 8 \end{aligned}$	271 50 $43 \cdot 0$ 303 53 $47 \cdot 1$ 304 01 $53 \cdot 7$ 324 12 $37 \cdot 7$	$\begin{array}{rrr} 92 & 00 & 02 \cdot 9 \\ 124 & 18 & 30 \cdot 4 \\ 124 & 19 & 21 \cdot 9 \\ 144 & 20 & 02 \cdot 4 \end{array}$	Solo. Holmes. Black Eagle Bend.	$\begin{array}{r} 9316 \cdot 8 \\ 29886 \cdot 8 \\ 21117 \cdot 9 \\ 12689 \cdot 8 \end{array}$	$\begin{aligned} & 3 \cdot 969268 \\ & 4 \cdot 475479 \\ & 4 \cdot 324650 \\ & 4 \cdot 103454 \end{aligned}$
Glacier, ${ }^{1}$ point on, 1909..		\ldots	$613750 \cdot 39$ $14155 \quad 57 \cdot 70$	$\begin{array}{r} 1560 \\ 850 \end{array}$	$\begin{array}{lll} 234 & 14 & 27 \\ 229 & 22 & 35 \end{array}$	542507 1192634	Bend. Skolai	$\begin{array}{r} 13171 \cdot 5 \\ 4601 \cdot 2 \end{array}$	$\begin{aligned} & 4 \cdot 119636 \\ & 3 \cdot 662873 \end{aligned}$
U.S. G.S. " X," 1909.	$2635 \cdot 7$	8647	$\begin{array}{rrr} 6138 & 54 \cdot 312 \\ 14159 & 00 \cdot 965 \end{array}$	$\begin{array}{r} 1681 \cdot 3 \\ 14 \cdot 2 \end{array}$	$\begin{array}{lll} 242 & 39 & 52 \cdot 4 \\ 243 & 32 & 23 \cdot 6 \\ 246 & 49 & 42 \cdot 5 \\ 251 & 57 & 30 \cdot 2 \\ 262 & 07 & 17 \cdot 7 \end{array}$	$\begin{array}{lll}63 & 05 & 56 \cdot 6 \\ 64 & 19 & 36 \cdot 4 \\ 67 & 03 & 03 \cdot 9 \\ 72 & 45 & 55 \cdot 7 \\ 83 & 00 & 41 \cdot 5\end{array}$	Burnt Hill. Sheep Bend. Cache. Kletsan.	$\begin{aligned} & 29327 \cdot 4 \\ & 52533 \cdot 2 \\ & 14556 \cdot 5 \\ & 50861 \cdot 1 \\ & 53984 \cdot 9 \end{aligned}$	$\begin{aligned} & 4 \cdot 467273 \\ & 4 \cdot 720434 \\ & 4 \cdot 163058 \\ & 4 \cdot 706386 \\ & 4 \cdot 732272 \end{aligned}$
Beaver Peak, 1909...... . . .	$2709 \cdot 4$	8889	$\begin{array}{rrr} 61 & 50 & 12 \cdot 488 \\ 141 & 57 & 52 \cdot 897 \end{array}$	$\begin{aligned} & 386 \cdot 6 \\ & 774 \cdot 1 \end{aligned}$	286 44 $13 \cdot 1$ 290 17 $52 \cdot 6$ 320 57 $46 \cdot 4$	$\begin{array}{lll} 107 & 09 & 18 \cdot 7 \\ 110 & 32 & 10 \cdot 1 \\ 141 & 10 & 08 \cdot 6 \end{array}$	Burnt Hill. Solo. Bend	$\begin{aligned} & 26162 \cdot 5 \\ & 15202 \cdot 3 \\ & 19659 \cdot 1 \end{aligned}$	$\begin{aligned} & 4 \cdot 417680 \\ & 4 \cdot 181909 \\ & 4 \cdot 293564 \end{aligned}$
Glacier, ${ }^{1}$ west end of, 1909..	\ldots	\ldots	$\begin{array}{rrr} 6137 & 26 \cdot 34 \\ 141 & 58 & 04 \cdot 27 \end{array}$	815 63	$\begin{array}{lll} 236 & 03 & 05 \\ 284 & 24 & 43 \end{array}$	$\begin{array}{rrr}56 & 1537 \\ 104 & 30 & 34\end{array}$	Bend. Skolai	$\begin{array}{r} 15127.6 \\ 6066 \cdot 4 \end{array}$	$\begin{aligned} & 4 \cdot 179771 \\ & 3 \cdot 782931 \end{aligned}$
Peak No. 6, ${ }^{1} 1909$.	$3147 \cdot 0$	10325	$\begin{array}{rrr} 6131 & 19 \cdot 18 \\ 14159 & 07 \cdot 37 \end{array}$	594 109	$\begin{array}{llll}207 & 14 & 31 \\ 214 & 37 & 18\end{array}$	$\begin{array}{lll}27 & 29 & 52 \\ 34 & 44 & 04\end{array}$	Solo. Skolai	$\begin{aligned} & 33533 \cdot 4 \\ & 11978 \cdot 5 \end{aligned}$	$\begin{aligned} & 4 \cdot 525477 \\ & 4 \cdot 078402 \end{aligned}$
Peak No. 7, 1909.	$2700 \cdot 5$	8860	$\begin{array}{rrr} 61 & 34 & 52 \cdot 828 \\ 141 & 59 & 21 \cdot 101 \end{array}$	$\begin{array}{r} 1635 \cdot 3 \\ 311 \cdot 4 \end{array}$	$\begin{array}{lll} 213 & 49 & 57 \cdot 0 \\ 226 & 00 & 35 \cdot 8 \\ 245 & 09 & 32 \cdot 2 \end{array}$	$\begin{array}{lll} 34 & 05 & 31 \cdot 1 \\ 46 & 14 & 14 \cdot 7 \\ 65 & 16 & 30 \cdot 4 \end{array}$	Solo. Bend Skolai	$\begin{array}{r} 27930 \cdot 8 \\ 19011 \cdot 8 \\ 7722 \cdot 5 \end{array}$	$\begin{aligned} & 4 \cdot 446084 \\ & 4 \cdot 279023 \\ & 3 \cdot 887760 \end{aligned}$
Ice, 1912.			$\begin{array}{rrr} 61 & 37 & 07.752 \\ 141 & 58 & 30 \cdot 497 \end{array}$	$\begin{aligned} & 240 \cdot 0 \\ & 449 \cdot 4 \end{aligned}$	$\begin{array}{lll} 215 & 41 & 12 \cdot 4 \\ 278 & 28 & 55 \cdot 6 \end{array}$	$\begin{array}{lll} 35 & 47 & 01 \cdot 9 \\ 98 & 35 & 09 \cdot 3 \end{array}$	Russell. Skolai	$\begin{array}{r} 10008 \cdot 1 \\ 6331 \cdot 3 \end{array}$	$\begin{aligned} & 4 \cdot 000352 \\ & 3 \cdot 801495 \end{aligned}$

[^37]GEOGRAPHIC POSITIONS OF TRIANGULATION STATIONS-Continued.

Station.	Elevati	ion.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Logarithm.
Glacier, 1912.............. .	Meters.	Feet.	"		- ' ${ }^{\text {c }}$	- , "		Meters.	
	$2606 \cdot 9$	8553	$\begin{array}{lll}61 & 39 & 53 \cdot 591\end{array}$	$1658 \cdot 9$	$\begin{array}{llll}250 & 08 & 29 \cdot 2 \\ 334 & 15 & 58.9\end{array}$	$701646 \cdot 5$	Russell	8831.6	3.946041
			$1420118 \cdot 372$	$270 \cdot 3$	$\begin{array}{rrrr}334 & 15 & 58 \cdot 9 \\ 2 & 43 & 34 \cdot 9\end{array}$	$\begin{array}{llll}154 & 18 & 26 \cdot 6 \\ 182 & 43 & 17 \cdot 3\end{array}$	Ice Pas	5631.0 6209.5	3.755721 3.793060
Skolai Peak, ${ }^{1} 1912$.	$2631 \cdot 2$	8633	$6138 \quad 54 \cdot 22$	1678.4	893317	2692355	Gofer	$9394 \cdot 2$	3.97286
			1415900.96	$14 \cdot 1$	2322627	523243	Russell	$7929 \cdot 8$	$3 \cdot 89926$
Pass, 1912.	$1772 \cdot 0$	5814	$613633 \cdot 226$	1028.5	$\begin{array}{llll}223 & 03 & 44 \cdot 8\end{array}$	$\begin{array}{llll}43 & 12 & 19 \cdot 6\end{array}$	Russell	$12596 \cdot 8$	4-100260
			1420138.408	$566 \cdot 0$	$\begin{array}{llll}248 & 52 & 34 \cdot 7 \\ 269 & 06 & 19.6\end{array}$	$\begin{array}{llll}68 & 55 & 20 \cdot 0 \\ 89 & 15 & 18.6\end{array}$		$2968 \cdot 8$ $9033 \cdot 2$	3.472574 3.955842
Rock in Skolai Pass, ${ }^{1} 1909$.	\ldots	$613547 \cdot 07$	1457	2355337	561037	Bend	$20580 \cdot 8$	4-313462
			$\begin{array}{llll}142 & 03 & 09.87\end{array}$	146	2612245	813304	Skolai	$10499 \cdot 0$	$4 \cdot 021146$
	\ldots	\ldots	$\begin{array}{llll}61 \quad 38 & 05 \cdot 13\end{array}$	$158 \cdot 8$	1354650	3154028	Coal.	9158.4	$3 \cdot 96182$
			1420759.90	$882 \cdot 3$	1751256	3551210	Frederika	$9250 \cdot 6$	$3 \cdot 96617$
Peak " H,' 1913...........	\cdots	\ldots	$\begin{array}{llll}61 & 53 & 39.42\end{array}$	$1220 \cdot 3$	2820124	1031706	Harris	77321.8	$4 \cdot 88830$
			1420950.93	$743 \cdot 9$	2872820	1083121	Kletsan	$66072 \cdot 4$	$4 \cdot 82002$
					2900610	1112220	Jenerk	$81344 \cdot 8$	4.91033
					2993724	1205131	Klutla	$85925 \cdot 3$	4.93412
Southwest Lime Peak, ${ }^{1} 1909$	$2940 \cdot 7$	9648	$\begin{array}{lll}61 & 50 & 57 \cdot 40\end{array}$	1777	3064826	1271037	Bend.	$27725 \cdot 5$	$4 \cdot 442879$
			$1420900 \cdot 77$	11	3101252	1302924	End	$21622 \cdot 9$	$4 \cdot 334913$
Peak " X ", ${ }^{1 \cdot 2} 1913 . \ldots . . .$. .	3066 - 1	10059	$6152 \quad 23 \cdot 58$	$730 \cdot 0$	2883251	1094857	Jenerk	$80517 \cdot 4$	4.90589
			$142 \quad 10 \quad 47 \cdot 25$	$690 \cdot 6$	2981544	1192947	Klutlan	$84742 \cdot 1$	$4 \cdot 92810$
Frederika, 1912.	$2426 \cdot 5$	7961	614302.914	$90 \cdot 2$	$\begin{array}{llll}311 & 13 & 30 & 4\end{array}$	$1312010 \cdot 1$	Glacier	$8883 \cdot 4$	3.948577
			$14208 \cdot 52 \cdot 418$	$770 \cdot 0$	$50158 \cdot 6$	$1850117 \cdot 6$	Gofer	$7814 \cdot 7$	$3 \cdot 892913$
Peak " B ", ${ }^{1} 1912$.	$2752 \cdot 0$	9029	$61 \quad 3637 \cdot 84$	1171.4	1182038	2980307	Goat	23355 - 0	4-36838
			$1420627 \cdot 29$	$402 \cdot 3$	1695137	3494930	Frederika	$12110 \cdot 5$	$4 \cdot 08316$
Peak " C ' ${ }^{1}{ }^{1} 1912$.	$2667 \cdot 7$	8752	$61 \quad 36 \quad 03 \cdot 19$	$98 \cdot 7$	1254159	$\begin{array}{lll}305 & 2507\end{array}$	Goat	$20805 \cdot 6$	4.31818
			$142 \quad 10 \quad 36 \cdot 32$	$535 \cdot 6$	1864158	64330	Frederika	$13082 \cdot 8$	$4 \cdot 11670$
Peak " D ", 1912.	2717.2	8915	$613745 \cdot 26$	$1401 \cdot 1$	1305104	3104043	Goat	13691 - 1	$4 \cdot 13644$
			$1421801 \cdot 37$	$20 \cdot 2$	$\begin{array}{llll}219 & 19 & 39 \\ 254\end{array}$	$\begin{array}{llll}39 & 27 & 42 \\ 74 & 35\end{array}$	Frederika	$12724 \cdot 8$	4-10465
					2542738	743500	Gofer.	$7677 \cdot 5$	$3 \cdot 88522$
Gofer, 1912................ .	$1547 \cdot 0$	5075	$613851 \cdot 443$	$1592 \cdot 4$	$25518 \quad 22 \cdot 0$	$75 \quad 2542 \cdot 6$	Glacier	$7615 \cdot 7$	3.881708
			1420938.981	573.9	$3010512 \cdot 3$	$1211215 \cdot 2$	Pass.	$8272 \cdot 5$	3.917638
Frederika Mountain, ${ }^{1} 1912$.	3148.4	10329	$\begin{array}{llll}61 & 46 & 17 \cdot 69\end{array}$	$547 \cdot 6$	640014	2434607	Goat	15729.7	4-19672
			1421343.98	$644 \cdot 9$	3452148	1652524	Gofer	$14275 \cdot 7$	4-15460
Peak " F ' ${ }^{\prime},{ }^{1 \cdot 2} 1913 . \ldots . .$.	$3155 \cdot 9$	10354	614659.69	$1847 \cdot 8$	2724109	935929	Harris.	$78393 \cdot 7$	$4 \cdot 89428$
			$142 \quad 12 \quad 53 \cdot 66$	$786 \cdot 6$	2762614	973153	Kletsan	$66125 \cdot 5$	$4 \cdot 82037$
Peak " G ${ }^{\prime},{ }^{1 / 2} 1913 \ldots \ldots . .$.	$3237 \cdot 8$	10623	$\begin{array}{llll}61 & 50 & 07 \cdot 38\end{array}$	$228 \cdot 5$	2765120	981010	Harris	$79355 \cdot 7$	4.89958
			$14213 \quad 26 \cdot 42$	$386 \cdot 7$	2850010	1061928	Jenerk	$82370 \cdot 2$	$4 \cdot 91577$
Coal, 1912................	$2217 \cdot 7$	7276	614136.968	1144.4	$24435 \quad 28 \cdot 1$	$644104 \cdot 4$	Frederika	6211.4	$3 \cdot 793192$
			$142 \quad 15 \quad 14 \cdot 344$	$210 \cdot 9$	$3160228 \cdot 3$	$1360723 \cdot 5$	Gofer	$7113 \cdot 4$	3-852078
Rohn, 1912.	$2096 \cdot 0$	6877	$614404 \cdot 316$	$133 \cdot 6$	$27957 \quad 03 \cdot 1$	$1000747 \cdot 0$	Frederika.	$10902 \cdot 7$	$4 \cdot 037534$
			$1422103 \cdot 426$	$50 \cdot 3$	$\begin{array}{lllllllllll}311 & 36 & 24 \cdot 7\end{array}$	$1314132 \cdot 1$	Coal.	$6863 \cdot 6$	$3 \cdot 836554$
					$23938 \cdot 9$	$18239 \quad 15 \cdot 1$	Fulcru	$8573 \cdot 1$	3.933136
Foothill, 1912............. .	$2108 \cdot 6$	6918	$613806 \cdot 846$	211.9	$984837 \cdot 6$	2783858.4	Sentinel.	$9807 \cdot 0$	3.991535
			$1422104 \cdot 065$	59.9	$171 \quad 10 \quad 19 \cdot 5$	$3510956 \cdot 3$	Fulcrum	$2532 \cdot 1$	3.403488
Fulcrum, 1912.............	$1800 \cdot 4$	5907	$6139 \times 27 \cdot 674$	$856 \cdot 7$	$\begin{array}{llll}234 & 04 & 18.8\end{array}$	$540949 \cdot 9$	Coal.	$6828 \cdot 7$	$3 \cdot 834340$
			$1422130 \cdot 466$	$448 \cdot 6$	$\begin{array}{llll}239 & 02 & 17 \cdot 0\end{array}$	$\begin{array}{llll}59 & 13 & 24.4\end{array}$	Frederika	$12986 \cdot 3$ $10533 \cdot 7$	$4 \cdot 113486$
					$27601 \quad 30 \cdot 8$	$961157 \cdot 0$	Gofer	$10533 \cdot 7$	4.022581
Chimney Mountain, ${ }^{1} 1912$.	$2259 \cdot 0$	7411	$614305 \cdot 55$	$171 \cdot 8$	55313	1855307	Goat	980.5	$2 \cdot 99146$
			$1422939 \cdot 31$	$577 \cdot 5$	2562603	$76 \quad 33 \quad 38$	Rohn	7791.7	$3 \cdot 89163$
Regal Mountain, 1912.....	$4209 \cdot 5$	13811	614437.43 1425200.28	$1158 \cdot 7$	$\begin{array}{llll}271 & 55 & 35\end{array}$	92 106518	Rohn.	$27277 \cdot 8$ 38863.3	4.43581 4.58954
			$1425200 \cdot 28$	$4 \cdot 1$	$\begin{array}{llll}285 & 41 & 10 \\ 280 & 52 & 06\end{array}$	$\begin{array}{llll}106 & 18 & 28 \\ 101 & 11 & 41\end{array}$	Gofer	$38863 \cdot 3$ $19961 \cdot 8$	$4 \cdot 58954$ 4.30020
Goat, 1912.	$1678 \cdot 4$	5506	$614234 \cdot 040$	$1053 \cdot 7$	$\begin{array}{llll}249 & 56 \quad 07 \cdot 4\end{array}$	$700347 \cdot 8$	Rohn.	$8170 \cdot 7$	3.912258
			$1422946 \cdot 155$	$678 \cdot 0$	$\begin{array}{llll}308 & 17 & 52 \cdot 2\end{array}$	$128 \quad 2508.6$	Fulcrum	$9296 \cdot 5$	3.968319
Sentinel, 1912.	$1847 \cdot 3$	6061	$613854 \cdot 930$	$1700 \cdot 4$	$1962555 \cdot 2$	$162755 \cdot 0$	Goat.	$7072 \cdot 3$	3-849560
			$1423202 \cdot 304$	$33 \cdot 9$	$\begin{array}{lllllllllll}225 & 14 & 45 \cdot 0\end{array}$	$452425 \cdot 1$	Rohn.	13622.4	4-134253
					$263 \quad 42 \quad 11 \cdot 9$	$835128 \cdot 0$	Fulcrum	9356-3	3.971102
Point on Sentinel Ridge, ${ }^{1}$1912.	$1889 \cdot 5$	6199	$613708 \cdot 12$ 1423013.08	251.4 92.8	$\begin{array}{lll}182 & 14 & 44 \\ 212 & 02 & 34\end{array}$	$2 \quad 1507$ 321038	Goat	$10097 \cdot 2$ $15210 \cdot 7$	$4 \cdot 00420$ $4 \cdot 18215$
			$1423013 \cdot 08$	$92 \cdot 8$	2120234	321038	Rohn	$15210 \cdot 7$	4.18215

[^38]GEOGRAPHIC POSITIONS OF TRIANGULATION STATIONS-Continued.

Station.	Elevat	tion.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Logarithm.
Nizina, 1912.	Meters.$2293 \cdot 8$	Feet. 7525	- ' ${ }^{\prime}$	$\begin{array}{r} 1387 \cdot 7 \\ 671 \cdot 3 \end{array}$	- ' 1	- '		Meters.	
			$\begin{array}{rrr}61 & 36 & 44 \cdot 828\end{array}$		$\begin{array}{llll}210 & 49 & 20.4\end{array}$	30 51 $44 \cdot 1$ 66 48	Sentinel.	4690.8 12750.0	3.671249 4.105511
			$1423445 \cdot 550$		$\begin{array}{llll}246 & 36 & 47 \cdot 8 \\ 258 & 03 & 11 \cdot 8\end{array}$	$\begin{array}{lll}66 & 48 & 27.5 \\ 78 & 15 & 14.6\end{array}$	Fulcrum Foothill.	$12750 \cdot 0$ $12367 \cdot 8$	$4 \cdot 105511$ $4 \cdot 092293$
Nikolai, 1912...............	$2264 \cdot 7$	7430	$\begin{array}{rrr} 61 & 30 & 34 \cdot 499 \\ 142 & 39 & 10 \cdot 750 \end{array}$	1067.9159.0	$1984932 \cdot 6$	$185325 \cdot 8$	Nizina	12114.1	$4 \cdot 083291$
					$\begin{array}{llllllllllllllll}228 & 44 & 39 \cdot 2\end{array}$	49.40034 .9	Foothill.	21291.2	$4 \cdot 328200$
					$2815447 \cdot 4$	$1020403 \cdot 0$	Chitistone	$9560 \cdot 5$	$3 \cdot 980480$
Nikolai Peak, ${ }^{1} 1912$.	\ldots	\cdots	$\begin{array}{llll}61 & 30 & 35 \cdot 28\end{array}$	1092 - 1	2122643	324238	Rohn	$29720 \cdot 8$	$4 \cdot 47306$
			$\begin{array}{ll}142 & 39 \\ 09.43\end{array}$	$139 \cdot 5$	2254526	460628	Coal.	29450-3	$4 \cdot 46909$
Chitistone, 1912...........	$2082 \cdot 9$	6834	$\begin{array}{llll}61 & 29 & 30 \cdot 337\end{array}$	$939 \cdot 1$	1580551.2	$\begin{array}{llll}338 & 00 & 28 \cdot 5\end{array}$	Nizina.	$14500 \cdot 9$	$4 \cdot 161395$
			$142 \quad 28 \quad 38 \cdot 579$	$570 \cdot 7$	$2024240 \cdot 2$	$224919 \cdot 9$	Foothil	$17340 \cdot 0$	$4 \cdot 239048$
Boulder, 1912...............	$2062 \cdot 6$	6767	6124 57.006	$1764 \cdot 6$	$14415 \quad 11.7$	$3240744 \cdot 6$	Nikolai.	$12882 \cdot 3$	4-109993
			$1423041 \cdot 869$	$621 \cdot 0$	$1921002 \cdot 6$	$121150 \cdot 9$	Chitistone.	$8656 \cdot 0$	$3 \cdot 937316$
East Sourdough, 1912.....	$1822 \cdot 5$	5979	$612448 \cdot 221$	$1492 \cdot 7$	$\begin{array}{llll}185 & 56 & 46 \cdot 1\end{array}$	$55752 \cdot 4$	Nikolai.	10777 - 3	$4 \cdot 032511$
			$1424026 \cdot 243$	$389 \cdot 3$	$\begin{array}{lllll}230 & 07 & 20 \cdot 3\end{array}$	$\begin{array}{llll}50 & 17 & 42 \cdot 0\end{array}$	Chitistone	13645.4	4-134987
Sourdough Peak, 1912....	$\ldots .$.		$612443 \cdot 04$	$1332 \cdot 3$	3004735	1205845	Williams	13202 - 3	$4 \cdot 12065$
			$14244 \quad 01.67$	14.8	3164623	1365532	Geolog	13592.8	$4 \cdot 13331$
Mount Blackburn, ${ }^{1}$ 1912....	5036.3	16523	$614348 \cdot 61$	$1504 \cdot 8$	3204456	1412608	Chititu	66259-8	$4 \cdot 82125$
			$143 \quad 24 \quad 05 \cdot 18$	$76 \cdot 1$	3224630	1433137	Bulb	$76102 \cdot 7$	$4 \cdot 88140$
Nizina River, Northeast Base, 1912.	$479 \cdot 7$	1574	$\begin{array}{rrr} 61 & 23 & 46 \cdot 960 \\ 142 & 36 & 14 \cdot 717 \end{array}$	$\begin{array}{r} 1453 \cdot 7 \\ 218 \cdot 4 \end{array}$	$\begin{array}{llll}246 & 15 & 24 \cdot 7\end{array}$	$66 \quad 2016 \cdot 9$	Boulder.	$5393 \cdot 9$	$3 \cdot 731901$
					$\begin{array}{llll}318 & 52 & 02 \cdot 7\end{array}$	$\begin{array}{ll}138 & 56 \\ 22 & \text { - }\end{array}$	Williams.	$6689 \cdot 4$	3.825385
						$2540850 \cdot 0$	Nizina River, Southwest Base.	$2552 \cdot 3$	$3 \cdot 406927$
					$1165754 \cdot 1$	$2965413 \cdot 3$	East Sourdough.....	$4186 \cdot 5$	3-621846
Nizina River, Southwest Base, 1912.	$458 \cdot 7$	1505	$\begin{array}{rrr} 61 & 23 & 24 \cdot 466 \\ 142 & 39 & 00 \cdot 131 \end{array}$	$757 \cdot 4$	$1534618 \cdot 5$	$\begin{array}{llll}333 & 45 & 02.9\end{array}$	East Sourdough	$2890 \cdot 5$	$3 \cdot 460973$
				1.9	$\begin{array}{llll}248 & 45 & 42 \cdot 7\end{array}$	$685300 \cdot 1$	Boulder.	7929.6	$3 \cdot 899249$
					$\begin{array}{llll}302 & 18 & 42 \cdot 2\end{array}$	$122 \quad 25 \quad 27 \cdot 2$	Williams.	$8115 \cdot 7$	$3 \cdot 909328$
					$\begin{array}{llll}53 & 14 & 30 \cdot 7\end{array}$	$23310 \cdot 27 \cdot 7$	Young Cree	$5133 \cdot 1$	3.710377
	$601 \cdot 7$	1974	$61 \quad 2154 \cdot 58$	1689 -5	875539	2674757	Young Creek	$7828 \cdot 2$	3.89366
			$\begin{array}{llll}142 & 34 \quad 50 \cdot 40\end{array}$	$748 \cdot 8$	3464423	1664528	Geolog.	$4830 \cdot 5$	3.68399
Young Creek, 1912.........	$468 \cdot 3$	1537	$612145 \cdot 152$	$1397 \cdot 7$	$2063108 \cdot 3$	$263355 \cdot 7$	East Sourdough	$6334 \cdot 5$	$3 \cdot 801715$
			$1424336 \cdot 899$	$548 \cdot 3$	$\begin{array}{llll}242 & 36 & 19 \cdot 5\end{array}$	624739.9	Boulder.	$12948 \cdot 5$	$4 \cdot 112220$
					$2763057 \cdot 7$	$964145 \cdot 6$	William	$11044 \cdot 3$	$4 \cdot 043139$
Williams, 1912............. .	$1910 \cdot 8$	6269	$612104 \cdot 106$	$127 \cdot 1$	$130 \quad 32 \quad 17 \cdot 3$	$310 \cdot 2416 \cdot 6$.	East Sourdough .	$10688 \cdot 3$	$4 \cdot 028910$
			1423118.686	$277 \cdot 7$	$1841955 \cdot 5$	$42027 \cdot 8$.	Boulder.	$7230 \cdot 1$	$3 \cdot 859145$
May Creek, 1912...........	$592 \cdot 0$	1942	$\begin{array}{llll}61 & 19 & 10 \cdot 590\end{array}$	$327 \cdot 8$	$\begin{array}{lllll}158 & 49 & 14 \cdot 3\end{array}$	$\begin{array}{llll}338 & 47 & 24 \cdot 8\end{array}$	Young Creek	$5131 \cdot 5$	$3 \cdot 710247$
			$1424132 \cdot 127$	$478 \cdot 0$	$\begin{array}{llll}248 & 51 & 36 \cdot 5 \\ 279 & 40 & 09.5\end{array}$	$\begin{array}{llll}69 & 00 & 34 \cdot 8 \\ 99 & 50 & 34 \cdot 4\end{array}$	Williams	$9776 \cdot 2$ 10756.4	$3 \cdot 990172$ $4 \cdot 031667$
Geolog, 1912	$1412 \cdot 1$	4633	$611922 \cdot 686$	$702 \cdot 2$	$2732 \quad 29 \cdot 2$	$2072919 \cdot 5$	Chititu.	$6971 \cdot 2$	$3 \cdot 843306$
			$14233 \quad 35 \cdot 929$	$534 \cdot 6$	$870158 \cdot 8$	$2665501 \cdot 0$	May Creek	$7095 \cdot 0$	$3 \cdot 850950$
					$\begin{array}{llll}116 & 20 & 30 \cdot 0\end{array}$	$29611142 \cdot 60$	Young Creek	$9964 \cdot 4$	3.998450
					$2130039 \cdot 3$	$330239 \cdot 7$	Williams	$3744 \cdot 5$	$3 \cdot 573398$
Rex, 1912.	2227 - 4	7308	$61 \quad 1811 \cdot 706$	$362 \cdot 4$	$11803 \quad 28 \cdot 5$	$2975114 \cdot 0$	Young Creek	$14094 \cdot 0$	$4 \cdot 149033$
			$142 \quad 2939 \cdot 851$	$593 \cdot 3$	$1643633 \cdot 0$	$3443506 \cdot 3$	Williams.	$5535 \cdot 4$	$3 \cdot 743150$
Calamity, 1912...........	$2348 \cdot 0$	7703	$611632 \cdot 088$	$993 \cdot 3$	$1095107 \cdot 3$	$2893741 \cdot 8$	May Creek	14526.4	$4 \cdot 162158$
			$142 \quad 2613-854$	$206 \cdot 4$	$13510 \quad 14 \cdot 2$	$\begin{array}{llll}315 & 07 & 13 \cdot 5\end{array}$	Rex.	$4349 \cdot 9$	$3 \cdot 638480$
Virginia, ${ }^{1} 1912$.	$1589 \cdot 7$	5216	$\begin{array}{llll}61 & 15 & 59 \cdot 44\end{array}$	1839.9	905752	2705108	Chititu	$6858 \cdot 7$	3.83624
			$142 \quad 2932 \cdot 08$	$478 \cdot 2$	1500215	3295841	Geolog	7264-1	3.86118
Chititu, 1912.	$1458 \cdot 9$	4787	$\begin{array}{lll}61 & 1602.953\end{array}$	91.4	$\begin{array}{llll}146 & 21 & 08 \cdot 0\end{array}$	$\begin{array}{llll}326 & 17 & 20 \cdot 0\end{array}$	May Creek	6979-8	3.843841
			$1423712 \cdot 207$	181.9	$\begin{array}{llll}239 & 20 & 26 \cdot 8 \\ 264 & 40 & 03 \cdot 4\end{array}$	59 84 84 49	Rex................	$7828 \cdot 5$ $9852 \cdot 1$	$\begin{aligned} & 3 \cdot 893678 \\ & 3 \cdot 993530 \end{aligned}$
Brigham, 1912.	$1722 \cdot 8$	5652	$611409 \cdot 189$	$284 \cdot 5$	490912.9	$2290104 \cdot 7$	Eaton.	11009.9	4.041783
			142 15-04.685	$69 \cdot 9$	$1135931 \cdot 2$	$2934944 \cdot 5$	Calamity.........	$10913 \cdot 5$	4.037966
Patty, 1912.	1882 - 0	6175	$611112 \cdot 639$	$391 \cdot 2$	$137 \quad 2003 \cdot 1$	$\begin{array}{llll}317 & 11 & 55.4\end{array}$	Chititu.	$12234 \cdot 5$	$4 \cdot 087585$
			$1422755 \cdot 872$	834.9	$1884420 \cdot 5$	$84549 \cdot 9$	Calamity	10004•8	$4 \cdot 000208$
Bulb, 1912.	1713.4	5621	$61 \begin{array}{lll}611 & 01 \cdot 258\end{array}$	$39 \cdot 0$	$1565138 \cdot 8$	$3364744 \cdot 0$	Chititu.	$10158 \cdot 2$	$4 \cdot 006817$
			$1423244 \cdot 369$	$663 \cdot 1$	$\begin{array}{llll}209 & 35 & 36 \cdot 9\end{array}$	$294119 \cdot 2$	Calamit	$11782 \cdot 4$	$4 \cdot 071235$
					$2651735 \cdot 6$	$852148 \cdot 3$	Patty	$4325 \cdot 3$	$3 \cdot 636020$

[^39]GEOGRAPHIC POSITIONS OF TRIANGULATION STATIONS-Continued.

${ }^{1}$ No check on this position.
23565-11

GEOGRAPHIC POSITIONS OF TRIANGULATION STATIONS-Continued.

Station.	Eleva	ion.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Logarithm.
Only, 1913.	Meters.	Feet.	- , "		- ' 1	- ' 1		Meters.	
	$1335 \cdot 3$	4381	$\begin{array}{rrr}61 & 03 & 06 \cdot 447 \\ 141 & 39 & 30 \cdot 613\end{array}$	$\begin{array}{r} 199 \cdot 6 \\ 459.4 \end{array}$	71713.4	$\begin{array}{llll}187 & 16 & 16 \cdot 4\end{array}$	Don.	$7722 \cdot 6$	3.887764
					$413751 \cdot 1$ 1312701.8	$\begin{array}{llll}221 & 33 & 57 \cdot 8 \\ 311 & 22 & 44 \cdot 1\end{array}$	Chop	$6031 \cdot 6$ $5888 \cdot 5$	$3 \cdot 780434$ $3 \cdot 770003$
Chitina River, East Base,	$628 \cdot 3$	2061	$\begin{array}{rrr} 610124 \cdot 271 \\ 1413758 \cdot 293 \end{array}$	$\begin{aligned} & 751 \cdot 3 \\ & 875 \cdot 5 \end{aligned}$	$760040 \cdot 8$	$25555 \quad 26 \cdot 8$	Chop..............	1799.4	3.255124
					$1161457 \cdot 5$	2961323	Base..	$5559 \cdot 0$	3.744994
					1403708.6	$3203130 \cdot 2$	Nibs.	$9137 \cdot 4$	3.960821
					$\begin{array}{ll}156 & 20 \\ 278 & 47.9\end{array}$	$33619 \quad 27 \cdot 2$	Only	$3453 \cdot 0$	3.538200
					$\begin{array}{r}278 \\ 27 \\ \hline 76 \quad 10 \cdot 5 \\ \hline 6\end{array}$	$981550 \cdot 0$ $2074352 \cdot 5$	Shelf Don.	$5074 \cdot 8$ $5082 \cdot 2$	$\begin{aligned} & 3 \cdot 705421 \\ & 3 \cdot 706055 \end{aligned}$
Shelf, 1913.............. .	$1360 \cdot 4$	4463	$\begin{array}{llll}61 & 01 & 00 \cdot 349\end{array}$	$10 \cdot 8$	$\begin{array}{llll}63 & 06 & 39 \cdot 8\end{array}$	$2425929 \cdot 7$	Don.	$8290 \cdot 6$	3.918585
			$141 \quad 32 \quad 24 \cdot 059$	361.5	$1212442 \cdot 5$	$30118 \quad 29 \cdot 3$	Only	$7500 \cdot 1$	3.875065
Sub, 1913................. .	$1885 \cdot 0$	6184	$\begin{array}{rrr} 61 & 01 & 36 \cdot 397 \\ 141 & 31 & 25 \cdot 711 \end{array}$	$\begin{array}{r} 1126 \cdot 7 \\ 386 \cdot 1 \end{array}$	$812446 \cdot 4$	$2611348 \cdot 5$	Chop	$11420 \cdot 6$	4.057689
					$2952909 \cdot 0$	$1154301 \cdot 1$	Chitina	$15859 \cdot 1$	4. 200278
					$\begin{array}{llll}313 & 24 & 43.4\end{array}$	$\begin{array}{llll}133 & 32 & 27 \cdot 8\end{array}$	Eck.	$10999 \cdot 3$	4.041365
					$35008 \quad 24 \cdot 4$	$1701016 \cdot 8$	Bud	$11310 \cdot 2$	4.053471
Bud, 1913.	$1591 \cdot 7$	5222	$6055 \quad 36 \cdot 378$	1125.9	$1213744 \cdot 5$	$30127 \quad 51 \cdot 2$	Don.	$11985 \cdot 3$	4.078650
			$141 \quad 2917 \cdot 152$	$258 \cdot 4$	$\begin{array}{llll}146 & 33 & 57 \cdot 4 \\ 164 & 21 & 33.6\end{array}$	$\begin{array}{llll}326 & 25 & 00 \cdot 9 \\ 344 & 18 & 50 \cdot 2\end{array}$	Only	$16707 \cdot 8$ $10414 \cdot 6$	$4 \cdot 222919$
" A ' Mountain, ${ }^{1} 1913 . . .$. .	$2886 \cdot 6$	9470	$\begin{array}{lll}61 & 02 & 13 \cdot 64\end{array}$	$422 \cdot 1$	3253447	1454034	Eck	10566	4.02390
			$141 \quad 2911 \cdot 64$	$174 \cdot 8$	002314	1802309	Bud	12297	4.08979
Inter, 1913.	$2295 \cdot 2$	7530	$\begin{array}{rrr} 61 & 01 & 39 \cdot 566 \\ 141 & 28 & 01 \cdot 043 \end{array}$	$\begin{array}{r} 1224 \cdot 8 \\ 15 \cdot 7 \end{array}$	$54925 \cdot 5$	$\begin{array}{lllllllllllllllll}185 & 48 & 19\end{array}$	Bud	11299.9	$4 \cdot 053075$
					$30140 \quad 33 \cdot 4$	$1215126 \cdot 5$	Chitina	$13203 \cdot 1$	$4 \cdot 120676$
					$\begin{array}{lllll}305 & 27 & 15 \cdot 4\end{array}$	$\begin{array}{llllllllllllllll}125 & 46\end{array}$	Dane	$24884 \cdot 0$	4.395921
					$\begin{array}{llll}334 & 17 & 14.4\end{array}$	$1542411 \cdot 0$	Fritz	$16559 \cdot 0$	$4 \cdot 219034$
Crag, 1912.	$2460 \cdot 9$	8074	$\begin{array}{rrr}60 & 54 & 35 \cdot 16 \\ 141 & 27 & 50 \cdot 19\end{array}$	$\begin{array}{r} 1088 \cdot 3 \\ 756 \cdot 5 \end{array}$	1245936	3043120	Island.	$35474 \cdot 0$	4.54991
					1273305	3071020	Terminus.	$29531 \cdot 8$	$4 \cdot 47029$
					$\begin{array}{llll}134 & 35 & 45 \\ 136 & 11 & 04\end{array}$	3140731 3154645	Delay.	$40654 \cdot 4$ $36028 \cdot 0$	$4 \cdot 60911$ 4.55664
Tit, ${ }^{1}$ southeast on CragRidge, 1912.	$2465 \cdot 2$	8088	$60 \quad 54 \quad 08 \cdot 49$	$262 \cdot 8$		3052944	Island.	$36044 \cdot 6$	4-55684
			$\begin{array}{llll}141 & 27 & 42 \cdot 77\end{array}$	644.9	1284007	$\begin{array}{llll}308 & 17 & 15\end{array}$	Terminus.	$30129 \cdot 6$	$4 \cdot 47899$
Shag, ${ }^{1} 1913$.	$2863 \cdot 3$	9394	604508.88	$274 \cdot 8$	1890730	091104	Eck.	23295	$4 \cdot 36726$
			$141 \quad 2640 \cdot 26$	$609 \cdot 9$	1982624	183321	Walsh	22720	$4 \cdot 35641$
Eck, 1913.	$1279 \cdot 6$	4198	$\begin{array}{llll}60 & 57 & 31 & 894\end{array}$	$987 \cdot 1$	$593003 \cdot 1$	$\begin{array}{llll}239 & 24 & 11.4\end{array}$	Bud.	$7034 \cdot 9$	$3 \cdot 847257$
			$1412234 \cdot 795$	$523 \cdot 7$	$12608 \quad 05 \cdot 1$	3055929.8	Shelf	$10960 \cdot 7$	$4 \cdot 039839$
Red Mountain, ${ }^{1} 1913 . \ldots .$. .	$2776 \cdot 8$	9110	$\begin{array}{llll}61 & 01 & 30 \cdot 67\end{array}$	$949 \cdot 3$	113102	1912934	Eck.	$7542 \cdot 4$	$3 \cdot 87751$
			$141 \quad 2054 \cdot 73$	$822 \cdot 0$	343759	2143039	Bud	$13318 \cdot 0$	$4 \cdot 12444$
Fritz, 1913.	1297.4	4257	$\begin{array}{llll}60 & 53 & 37 \cdot 330\end{array}$	$1155 \cdot 3$	1135607.9	$2934805 \cdot 1$	Bud.	$9106 \cdot 6$	3.959354
			$1412004 \cdot 653$	$70 \cdot 2$	$\begin{array}{lll}141 & 01 & 37 \cdot 3 \\ 162 & 42 & 51 \cdot 0\end{array}$	$\begin{array}{llll}320 & 50 & 50 \cdot 9 \\ 342 & 40 & 39 \cdot 8\end{array}$	Shelf	$17660 \cdot 7$ 7604.6	$4 \cdot 247007$ 3.881077
Sway, 1913................	2184.5	7167	$\begin{array}{rr} 605238.098 \\ 14119 & 46.665 \end{array}$	$\begin{array}{r} 1179 \cdot 2 \\ 704 \cdot 1 \end{array}$	$1243244 \cdot 5$	$30411136 \cdot 4$	Chop	$26461 \cdot 7$	$4 \cdot 422617$
					$1333405 \cdot 7$	$3131637 \cdot 3$	Chitina River, West Base.	$24850 \cdot 7$	$4 \cdot 395338$
					$1373915 \cdot 4$	$3172200 \cdot 2$	Only	$26375 \cdot 0$	4-421192
Thumb, 1913.............	$2782 \cdot 3$	9128	$\begin{array}{rrr} 60 & 50 & 51 \cdot 665 \\ 141 & 18 & 50 \cdot 340 \end{array}$	$\begin{array}{r} 1599 \cdot 1 \\ 760 \cdot 3 \end{array}$	$1371747 \cdot 3$	3165929.9	Chitina River, West Base.	$27796 \cdot 3$	4.443987
					$\begin{array}{llll}139 & 15 & 59.9\end{array}$	$\begin{array}{llll}318 & 53 & 38 \cdot 1\end{array}$	Nibs.	$35254 \cdot 0$	$4 \cdot 547208$
					$1404558 \cdot 8$	$3202754 \cdot 6$	Only	$29426 \cdot 0$	$4 \cdot 468731$
					$\begin{array}{llll}147 & 03 & 10 \cdot 6\end{array}$	3265119.4	Shelf	$22476 \cdot 4$	$4 \cdot 351727$
					$\begin{array}{lll}229 & 19 & 23 \cdot 3 \\ 244 & 59 & 21 \cdot 4\end{array}$	$\begin{array}{lll}49 & 26 & 36 \cdot 2 \\ 65 & 10 & 54 \cdot 7\end{array}$	Point.	9848.9 13204.3	3.993387 4.120716
Walsh, 1913.	$1413 \cdot 1$	4636	$605644 \cdot 980$	$1392 \cdot 2$	$115840 \cdot 1$	$1915728 \cdot 7$	Fritz.	$5937 \cdot 4$	3-773593
			1411842.946	$646 \cdot 7$	1123709.4	$2923346 \cdot 7$	Eck.	$3780 \cdot 1$	3-577499
Tit, 1913.	$2600 \cdot 5$	8532	$605134 \cdot 696$	1073.9	$1383326 \cdot 1$	$\begin{array}{llll}318 & 15 & 01.9\end{array}$	Only	$28631 \cdot 0$	$4 \cdot 456836$
			$14118 \quad 27 \cdot 782$	$419 \cdot 4$	$1612504 \cdot 0$	$\begin{array}{llll}341 & 21 & 28 \cdot 2\end{array}$	Eck.	$11666 \cdot 3$	$4 \cdot 066933$
					$\begin{array}{lllll}234 & 29 & 30 \cdot 6\end{array}$	$543623 \cdot 8$	Point	$8758 \cdot 0$	3.942405
					$2495517 \cdot 1$	$70 \quad 0630 \cdot 7$	Dane	$12378 \cdot 3$	4-092660
Chitina, 1913.	$2543 \cdot 6$	8345	$605755 \cdot 003$	$1702 \cdot 4$	$270459 \cdot 7$	$\begin{array}{llll}207 & 01 & 03.4\end{array}$	Fritz	$8955 \cdot 4$	3.952083
			$1411534 \cdot 290$	$515 \cdot 9$	$524006 \cdot 6$	$23237 \quad 21 \cdot 7$	Walsh	$3572 \cdot 2$	$3 \cdot 552937$
					70 83	250 $1748 \cdot 8$	Bud.	13111.0	$4 \cdot 117635$
					$83 \quad 3606 \cdot 6$	$2632959 \cdot 0$	Eck	$6368 \cdot 2$	$3 \cdot 804018$
Chitina Mountain, top of first peak, ${ }^{1} 1912$		\ldots	$6057 \quad 58.91$	1823.4	1085931	2882615	Terminus	$36198 \cdot 5$	$4 \cdot 55869$
			$1411549 \cdot 02$	$737 \cdot 6$	1093151	2885304	Island..	42302 -9	$4 \cdot 62637$

[^40]GEOGRAPHIC POSITIONS OF TRIANGULATION STATIONS-Continued.

Station.	Eleva	ion.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Logarithm.
	Meters.	Feet.	- , "		- , "	- , "		Meters.	
Chitina Mountain, ${ }^{1}$ peak northwest of, 1912	$2883 \cdot 6$	9461	$\begin{array}{rrr} 61 & 02 & 18 \cdot 88 \\ 141 & 29 & 28 \cdot 41 \end{array}$	$\begin{aligned} & 584 \cdot 4 \\ & 426 \cdot 5 \end{aligned}$	992435 1171729	$\begin{array}{lll} 279 & 03 & 15 \\ 296 & 50 & 40 \end{array}$	Terminus. \qquad Delay	$\begin{aligned} & 22239 \cdot 2 \\ & 30922 \cdot 2 \end{aligned}$	$\begin{aligned} & 4 \cdot 34712 \\ & 4 \cdot 49027 \end{aligned}$
Chitina 2, peak southwest of, 1912	$2243 \cdot 5$	7361	$605343 \cdot 65$ $1410443 \cdot 37$	$1351 \cdot 1$ 654.0	$\begin{array}{lll}113 & 58 & 45 \\ 114 & 07 & 02 \\ 121 & 26 & 07\end{array}$	$\begin{array}{llll}293 & 10 & 16 \\ 293 & 24 & 04 \\ 300 & 37 & 40\end{array}$	Island............... Terminus Delay	$\begin{aligned} & 54551 \cdot 9 \\ & 48438 \cdot 4 \\ & 58230 \cdot 4 \end{aligned}$	$\begin{aligned} & 4 \cdot 73681 \\ & 4 \cdot 68519 \\ & 4 \cdot 76515 \end{aligned}$
Penn, 1913.	$1982 \cdot 9$	6506	$\begin{array}{rrr}60 & 51 & 32 \cdot 632 \\ 141 & 13 & 29.638\end{array}$	$1009 \cdot 9$ $447 \cdot 5$	$\begin{array}{lll} 122 & 58 & 26 \cdot 0 \\ 143 & 36 & 11 \cdot 1 \\ 153 & 59 & 56 \cdot 0 \end{array}$	$\begin{array}{lll} 302 & 52 & 40 \cdot 9 \\ 323 & 28 & 14 \cdot 7 \\ 333 & 55 & 22 \cdot 2 \end{array}$	Fritz. Eck Walsh	$\begin{array}{r} 7100 \cdot 9 \\ 13826 \cdot 9 \\ 10760 \cdot 3 \end{array}$	$\begin{aligned} & 3 \cdot 851314 \\ & 4 \cdot 140725 \\ & 4 \cdot 031823 \end{aligned}$
Penn Mountain, ${ }^{1} 1913$.	$\ldots .$.	\ldots	$\begin{array}{r}6049 \\ 141 \\ \hline 11\end{array}$	$1750 \cdot 3$ 533.6	$\begin{array}{llll}186 \\ 216 & 34 & 18 \\ \end{array}$	06 36 2511	Point.	$8168 \cdot 8$ $9062 \cdot 1$	$\begin{aligned} & 3.91216 \\ & 3.95723 \end{aligned}$
Mount Porky, ${ }^{1} 1913$.	\ldots	$604245 \cdot 50$ $141 \quad 1340 \cdot 80$	1408.3 619.0	$\begin{array}{llll}162 & 44 & 43 \\ 176 & 31 & 43 \\ 294 & 36 & 43\end{array}$	$\begin{array}{llll}342 & 40 & 13 \\ 356 & 30 & 04 \\ 115 & 07 & 03\end{array}$	Thumb. Chitina Mount King	$\begin{aligned} & 15760 \\ & 28203 \\ & 34972 \end{aligned}$	$\begin{aligned} & 4 \cdot 19756 \\ & 4 \cdot 45030 \\ & 4 \cdot 54372 \end{aligned}$
Point, 1913	$1409 \cdot 2$	4623	$\begin{array}{rrr} 60 & 54 & 18 \cdot 807 \\ 141 & 10 & 34 \cdot 867 \end{array}$	$582 \cdot 0$ $525 \cdot 7$	27 81 $09343 \cdot 8811.6$	$\begin{array}{lll} 207 & 07 & 07 \cdot 1 \\ 261 & 25 & 53 \cdot 8 \\ 301 & 32 & 41 \cdot 6 \end{array}$	Penn. Fritz. . Walsh	$\begin{aligned} & 5780 \cdot 0 \\ & 8686 \cdot 6 \\ & 8633 \cdot 7 \end{aligned}$	$\begin{aligned} & 3 \cdot 761926 \\ & 3 \cdot 938849 \\ & 3 \cdot 936196 \end{aligned}$
Dane, 1913.	$2184 \cdot 6$	7167	$\begin{array}{rrrr}60 & 53 & 51 \cdot 376 \\ 141 & 05 & 36 \cdot 767\end{array}$	$1590 \cdot 1$ 554	59 100 10044 44	$\begin{array}{llll}238 & 53 & 52 \cdot 7 \\ 280 & 39 & 42 \cdot 6\end{array}$	Penn. Point.	$\begin{aligned} & 8327 \cdot 4 \\ & 4574 \cdot 0 \end{aligned}$	$\begin{aligned} & 3.920510 \\ & 3.660292 \end{aligned}$
Boundary A, 1913.	$1648 \cdot 0$	5408	$\begin{array}{rrr} 60 & 49 & 25 \cdot 813 \\ 141 & 00 & 10.615 \end{array}$	798.9 160.5	$\begin{array}{lll} 108 & 06 & 46 \cdot 5 \\ 133 & 58 & 46 \cdot 7 \\ 149 & 07 & 05 \cdot 2 \end{array}$	$\begin{array}{lll} 287 & 55 & 08 \cdot 7 \\ 313 & 49 & 41 \cdot 4 \\ 329 & 02 & 20 \cdot 3 \end{array}$	Penn Point. Dane	$\begin{array}{r} 12691 \cdot 8 \\ 13078 \cdot 0 \\ 9581 \cdot 7 \end{array}$	$\begin{aligned} & 4 \cdot 103522 \\ & 4 \cdot 116540 \\ & 3 \cdot 981441 \end{aligned}$
Boundary B. 1913.	$2630 \cdot 6$	8631	$605258 \cdot 645$ $1405958 \cdot 806$	$\begin{array}{r}1815 \cdot 1 \\ 887 \\ \hline 1\end{array}$	$\begin{array}{rrr}1 & 33 & 06 \cdot 8 \\ 77 & 49 & 25 \cdot 8 \\ 107 & 47 \\ 118 & 20 & 07 \cdot 6\end{array}$	$\begin{array}{lll}181 & 32 & 56 \cdot 5 \\ 257 & 37 & 37 \cdot 5 \\ 287 & 42 & 53 \cdot 5 \\ 298 & 19 & 24 \cdot 9\end{array}$	Boundary A Penn. Dane Blondie.	$\begin{array}{r} 6590 \cdot 1 \\ 12522 \cdot 8 \\ 5352 \cdot 2 \\ 838 \cdot 1 \end{array}$	$\begin{aligned} & 3 \cdot 818889 \\ & 4 \cdot 097702 \\ & 3 \cdot 728530 \\ & 2 \cdot 923318 \end{aligned}$
Porky Photo, ${ }^{1} 1913$	$2316 \cdot 9$	7601	$\begin{array}{r}6053 \\ 141 \\ 143 \\ \hline 0\end{array}$	1151.5 10.7	3414256 675750	16145 247 1841	Boundary A Penn.	$\begin{array}{r} 8193 \cdot 9 \\ 10243 \cdot 3 \end{array}$	$\begin{aligned} & 3.91349 \\ & 4.01044 \end{aligned}$
Dennis Photo, ${ }^{1} 1913$.	$2236 \cdot 9$	7339	$605345 \cdot 68$ $1410450 \cdot 71$	1413.9 764.7	$\begin{array}{rrr}332 & 14 & 05 \\ 62 & 19 & 14\end{array}$	$\begin{array}{llll}152 & 18 & 10 \\ 242 & 11 & 41\end{array}$	Boundary A......... Pennn.............	$\begin{aligned} & 9087 \cdot 2 \\ & 8846 \cdot 7 \end{aligned}$	$\begin{aligned} & 3.95843 \\ & 3.94678 \end{aligned}$
Blondie, 1913.	$2644 \cdot 4$	8676	$\begin{array}{rrr} 60 & 53 & 11 \cdot 493 \\ 141 & 00 & 47 \cdot 714 \end{array}$	$\begin{aligned} & 355 \cdot 7 \\ & 719 \cdot 7 \end{aligned}$	$\begin{array}{rrr} 355 & 24 & 39 \cdot 2 \\ 75 & 11 & 21 \cdot 3 \\ 105 & 50 & 46 \cdot 0 \end{array}$	$\begin{array}{lll} 175 & 25 & 11 \cdot 6 \\ 255 & 00 & 15 \cdot 7 \\ 285 & 46 & 33 \cdot 4 \end{array}$	Boundary A Penn. Dane.	$\begin{array}{r} 7007 \cdot 8 \\ 11898 \cdot 1 \\ 4530 \cdot 7 \end{array}$	$\begin{aligned} & 3 \cdot 845582 \\ & 4 \cdot 075476 \\ & 3 \cdot 656170 \end{aligned}$
Senator, 1913.	$2675 \cdot 0$	8776	$\begin{array}{rrr} 60 & 52 & 59 \cdot 501 \\ 140 & 59 & 52 \cdot 408 \end{array}$	1841.6 790.6	$\begin{array}{r} 22256 \cdot 6 \\ 774800 \cdot 8 \\ 1135937 \cdot 7 \\ 1071317 \cdot 0 \end{array}$	$\begin{array}{lll} 182 & 22 & 40 \cdot 7 \\ 257 & 36 & 06 \cdot 9 \\ 293 & 58 & 49 \cdot 4 \\ 287 & 08 & 16 \cdot 1 \end{array}$	Boundary A Penn Blondie. Dane.	$\begin{array}{r} 6619 \cdot 9 \\ 12622 \cdot 8 \\ 913 \cdot 1 \\ 5436 \cdot 2 \end{array}$	$\begin{aligned} & 3 \cdot 820850 \\ & 4 \cdot 101155 \\ & 2 \cdot 960537 \\ & 3 \cdot 735298 \end{aligned}$
Chris, ${ }^{1} 1913$.	$2480 \cdot 5$	8138	$604818 \cdot 51$ $1405959 \cdot 50$	$\begin{aligned} & 573.0 \\ & 899.7 \end{aligned}$	$\begin{array}{llll}139 & 22 & 25 \\ 153 & 44 & 11\end{array}$	$\begin{array}{llll}319 & 13 & 10 \\ 333 & 39 & 16\end{array}$	Point Dane.	14711 11493	$\begin{aligned} & 4 \cdot 16763 \\ & 4 \cdot 06043 \end{aligned}$
Cairn east of Boundary, ${ }_{1913}{ }^{1}$	$2710 \cdot 2$	8892	$\begin{array}{rrr} 60 & 53 & 00 \cdot 91 \\ 140 \quad 59 & 42 \cdot 22 \end{array}$	$\begin{array}{r} 28 \cdot 2 \\ 636 \cdot 9 \end{array}$	$\begin{array}{r} 34119 \\ 740901 \end{array}$	$\begin{array}{lll} 183 & 40 & 54 \\ 254 & 08 & 52 \end{array}$	Boundary A......... Senator...........	$\begin{array}{r} 6671 \cdot 6 \\ 159 \cdot 8 \end{array}$	$\begin{aligned} & 3 \cdot 82423 \\ & 2 \cdot 20365 \end{aligned}$
Peak King, 1913.	$5172 \cdot 8$	16971	$\begin{array}{r}6034 \\ 140 \\ \hline 8\end{array}$	$\begin{array}{r} 1559 \cdot 6 \\ 805 \cdot 3 \end{array}$	$\begin{array}{lll} 133 & 58 & 57 \\ 134 & 06 & 37 \\ 135 & 24 & 08 \\ 136 & 34 & 30 \\ 150 & 28 & 05 \end{array}$	$\begin{array}{llll}313 & 01 & 43 \\ 313 & 13 & 41 \\ 314 & 37 & 25 \\ 315 & 48 & 38 \\ 330 & 09 & 40\end{array}$	Nibs. Only Shelf Sub Monument No. 189	$\begin{aligned} & 81914 \\ & 76027 \\ & 68707 \\ & 68880 \\ & 38781 \end{aligned}$	$\begin{aligned} & 4 \cdot 91336 \\ & 4 \cdot 88097 \\ & 4 \cdot 83700 \\ & 4 \cdot 83809 \\ & 4 \cdot 58862 \end{aligned}$
$\begin{aligned} & \text { Mount Logan, East Dome, }{ }^{2} \end{aligned}$	$5448 \cdot 8$	17876	$603721 \cdot 24$ $140 \quad 2811 \cdot 36$	$\begin{aligned} & 657 \cdot 3 \\ & 172 \cdot 8 \end{aligned}$	$\begin{array}{lll} 121 & 51 & 50 \\ 123 & 22 & 02 \\ 127 & 00 & 46 \\ 128 & 30 & 21 \end{array}$	$\begin{array}{llll}300 & 58 & 31 \\ 302 & 07 & 14 \\ 305 & 58 & 29 \\ 307 & 46 & 15\end{array}$	Bud. Terminus. Only Walsh	$\begin{aligned} & 65022 \\ & 92293 \\ & 80416 \\ & 58324 \end{aligned}$	$\begin{aligned} & 4 \cdot 81306 \\ & 4 \cdot 96517 \\ & 4 \cdot 90534 \\ & 4 \cdot 76585 \end{aligned}$
$\underset{1913}{\text { Mount Logan, Middle Dome, }{ }^{2}}$	$5645 \cdot 7$	18523	$\begin{array}{r} 603619 \cdot 54 \\ 14031 \quad 18 \cdot 17 \end{array}$	$\begin{aligned} & 604 \cdot 8 \\ & 276 \cdot 4 \end{aligned}$	$\begin{array}{llll}129 & 17 & 14 \\ 130 & 34 & 54 \\ 1311 & 42 & 13 \\ 140 & 03 & 53\end{array}$	308 18 40 309 51 09 311 01 50 319 38 51	Only Eck. Walsh Monument No. 189	$\begin{aligned} & 79365 \\ & 60983 \\ & 57383 \\ & 40464 \end{aligned}$	$\begin{aligned} & 4.89963 \\ & 4.78521 \\ & 4.75878 \\ & 4 \cdot 60707 \end{aligned}$
Table Mountain, ${ }^{1} 1913 . .$. .	.	\ldots	$\begin{array}{rrr}60 & 27 & 20 \cdot 21 \\ 141 & 05 & 13 \cdot 88\end{array}$	$\begin{aligned} & 625 \cdot 5 \\ & 212 \cdot 2 \end{aligned}$	$\begin{array}{lll} 164 & 58 & 40 \\ 334 & 11 & 40 \\ 339 & 38 & 40 \end{array}$	$\begin{array}{lll} 344 & 51 & 18 \\ 154 & 19 & 54 \\ 159 & 44 & 11 \end{array}$	Mount Porky Mount St. Elias. West Shoulder, Mount St. Elias.	29661 20064 16796	$\begin{aligned} & 4 \cdot 47218 \\ & 4 \cdot 30242 \\ & 4 \cdot 22521 \end{aligned}$
Pyramid, ${ }^{1} 1913$.		\ldots	$\begin{array}{r}602237 \cdot 33 \\ 141 \\ \hline 1\end{array}$	1155.4 89.9	$\begin{array}{lll} 173 & 13 & 42 \\ 325 & 32 & 42 \\ 166 & 52 & 42 \end{array}$	$\begin{array}{lll} 353 & 12 & 43 \\ 145 & 37 & 13 \\ 346 & 44 & 21 \end{array}$	Table Mountain.. WestShoulder, Mount St. Elias. Mount Porky .	$\begin{array}{r} 8817 \\ 8481 \\ 38408 \end{array}$	$\begin{aligned} & 3.94532 \\ & 3.92845 \\ & 4.58442 \end{aligned}$

[^41]GEOGRAPHIC POSITIONS OF TRIANGULATION STATIONS-Concluded.

Station.	Elevation.		Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To station.	Distance.	Logarithm.
Mount St. Elias, West Shoulder, 1913	Meters.	Feet.	"		"	- ' ${ }^{\prime}$		Meters.	
	$5050 \cdot 1$	16569	$\begin{array}{llll}60 & 18 & 51 \cdot 27\end{array}$	$1586 \cdot 8$	1435841	3225055	Head	118468	$5 \cdot 073602$
			$14058 \quad 53 \cdot 35$	$819 \cdot 1$	$\begin{array}{llll}151 & 11 & 47 \\ 159 & 45 & 33\end{array}$	$\begin{array}{llll}330 & 22 & 18 \\ 339 & 17 & 11\end{array}$	Finis	105710 84750	5.024117 4.928140
Mount St. Elias, 1913.	$5488 \cdot 8$	18008	$6017 \quad 36 \cdot 24$$140 \quad 5545 \cdot 35$	$\begin{array}{r} 1121 \cdot 7 \\ 696 \cdot 7 \end{array}$	1433403	$\begin{array}{llll}322 & 23 & 34\end{array}$	Head.	122048	$5 \cdot 086531$
					1503001	3293748	Finis	109145	$5 \cdot 038003$
					1583344	3380238	Sub	87947	4.944221
	\ldots	6018141140	$\begin{aligned} & 689 \cdot 9 \\ & 128 \cdot 2 \end{aligned}$	1644710	3443523	Mount Porky	46954	$4 \cdot 67167$
					2320510	520616	West Shoulder, Mount St. Elias.	1460	3.16422
					2892410	1092759	Mount St. Elias	4284	$3 \cdot 63182$
Peak McArthur, west, 1913..	$4344 \cdot 2$	14253	6036327.93	$864 \cdot 5$	1225343	3014423	Shelf	85243	4.93066
			$140 \quad 12 \quad 59 \cdot 17$	$900 \cdot 3$	$\begin{array}{llll}123 & 50 & 40 \\ 126 & 05 & 50\end{array}$	$\begin{array}{llll}302 & 42 & 11 \\ 305 & 24 & 56\end{array}$	Sub.	85098 52522	4.92992 4.72034
Boundary, ${ }^{1}$ 1913.......... . .	2235	7340	605346	$1417 \cdot 5$	2860549	1060921	Blondie.	$3818 \cdot 6$	$3 \cdot 58190$
			1410451	$769 \cdot 4$	3362849	1563303	Snow	$11045 \cdot 1$	$4 \cdot 04317$
	2140	7020	604855	$1699 \cdot 2$	1502553	3302023	Point.	11532.6	$4 \cdot 06193$
			1410417	$263 \cdot 2$	1723400	3523251	Dane	9255.0	3.96637
Snow, ${ }^{1} 1913$.	2481	8140	604819	$572 \cdot 5$	1161443	2960255	Penn.	$13637 \cdot 3$	$4 \cdot 13473$
			1405959	$900 \cdot 0$	1752447	3552405	Blondie	$9098 \cdot 8$	3.95899
					1392229	$\begin{array}{ll}319 & 1314\end{array}$	Point	$14711 \cdot 8$	$4 \cdot 16767$
Sharp, ${ }^{1} 1913$.	2679	8790	605057	$1758 \cdot 0$	721704	2520225	Snow	$15996 \cdot 4$	$4 \cdot 20402$
			1404312	$179 \cdot 8$	1041420	2835946	Senator	$15573 \cdot 0$	$4 \cdot 19237$
	2641	8665	604644	$1352 \cdot 5$	1093223	2892425	Snow.	$8800 \cdot 8$	3.94452
			1405051	$772 \cdot 2$	2212923	413604	Sharp	$10467 \cdot 2$	$4 \cdot 01983$
Black, ${ }^{1} 1913$.	2544	8345	605218	$544 \cdot 7$	2872826	1073604	Sharp.	8303.9	3.91928
			1405156	$849 \cdot 8$	443919	2243217	Snow	$10395 \cdot 5$	$4 \cdot 01684$
Turn, ${ }^{1} 1913$.	2107	6910	604657	1597 -1	1475610	3275004	Black	$11915 \cdot 5$	4.07611
			1404451	$775 \cdot 3$	1915010	115142	Sharp.	$7755 \cdot 3$	3-88960
Duke, ${ }^{1} 1913$.	2524	8280	604626	801.6	945027	2744408	Ace.	$6592 \cdot 9$	3.81908
			1404337	$560 \cdot 2$	1823527	23549	Sharp	$8392 \cdot 9$	3.92391
Divide, ${ }^{1} 1913$.	2916	9565	604416	$507 \cdot 6$	1840330	40431	Black	14933 . 4	4-17416
			1405306	$97 \cdot 0$	2155345	360224	Sharp	$15313 \cdot 1$	4-18506
Low, ${ }^{1} 1913$.	2645	8675	604932	$1002 \cdot 8$	771604	2565408	Ace.	$23371 \cdot 8$	$4 \cdot 36869$
			1402545	$677 \cdot 3$	992949	2791434	Sharp	$16032 \cdot 6$	4-20500
	2551	8370	604607	$222 \cdot 8$	1334551	3133649	Sharp	$12975 \cdot 2$	$4 \cdot 11311$
			1403251	$778 \cdot 8$	2252351	45 30	Low	9054.8	3.95688
Mount Lucania, ${ }^{1} 1913$.	5226.4	17147	610116	$496 \cdot 8$	3545211	1745404	Low	$21865 \cdot 5$	$4 \cdot 33976$
			1402754	813.4	$\begin{array}{lll}37 & 0313\end{array}$	2172316	Ace	$34060 \cdot 3$	4.53225
Pass ${ }^{1 / 3}, 1913$.			604005 $141 \quad 10 \quad 13$	$\begin{aligned} & 147.6 \\ & 204.6 \end{aligned}$	2495845	700034	Alp	$2021 \cdot 1$	3-30558
Alp ${ }^{1 \cdot 2}, 1913$.		. \cdot	604027	$839 \cdot 1$	700034	2495845	Pass	$2021 \cdot 1$	3-30558
			1410808	127.7	1532103	3331143	Thumb	$21635 \cdot 8$	$4 \cdot 33517$
Porky ${ }^{1 / 2}$, 1913..		\ldots	604015	$454 \cdot 1$	$\begin{array}{llll}290 & 29 & 28\end{array}$	1103015	Pass	874.5	2.94176
			1411107	$112 \cdot 5$	2615443	815719	Alp.	$2745 \cdot 2$	3.43858
Bald Top ${ }^{1 \cdot 2}, 1913 . \ldots$.			604158	$1787 \cdot 8$	160928	1960830	Pass.	$3640 \cdot 7$	$3 \cdot 56119$
			1410907	$102 \cdot 6$	1515428	3314559	Thumb	$18736 \cdot 9$	4.27270
George ${ }^{\text {1/2, }} 1913$.			604051	$1570 \cdot 5$	611429	2411200	Pass.	$2955 \cdot 0$	$3 \cdot 47056$
			1410723	$347 \cdot 8$	1424659	3224528	Bald Top.	$2605 \cdot 4$	$3 \cdot 41587$
White Cap ${ }^{1 / 2}, 1913$.			604144	$1355 \cdot 3$	471222	$\begin{array}{llll}227 & 15 & 13\end{array}$	Porky	$4065 \cdot 9$	$3 \cdot 60916$
			1410751	$768 \cdot 4$	351341	2151545	Pass.	$3754 \cdot 2$	$3 \cdot 57452$

${ }^{1}$ Occupied with a 4 -inch instrument only.
${ }^{2}$ Computed from base Thumb-Pass. Occupied with a 4 -inch instrument only. No signals.
${ }^{3}$ Obtained from solution of 3-point problem.

GEOGRAPHIC POSITIONS OF BOUNDARY MONUMENTS AND LINE PROJECTION STATIONS ALONG THE 141st MERIDIAN FROM THE ARCTIC OCEAN TO MOUNT ST. ELIAS.

Based on Yukon Datum.

Stations.	Latitude. and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To stations.	Distance.	Logarithms.
Monument No. 1 (Cetera of the Boundary)	- '		"	"		Meters.	
	$6938 \cdot 45 \cdot 275$	$1403 \cdot 0$	$\begin{array}{llll}0 & 00 & 00 \cdot 0\end{array}$	$1800000 \cdot 0$	Monument No. 4	$19062 \cdot 7$	$4 \cdot 280184$
	$141 \quad 0000.000$	$0 \cdot 0$	220128.4	$2014912 \cdot 6$	Mosquito	$22790 \cdot 8$	4-357759
			$1180914 \cdot 1$	$2975914 \cdot 5$	Demarcatio	7811.9	3.892757
			$2840455 \cdot 3$	$\begin{array}{llll}104 & 14 & 07.3\end{array}$	Ocean.	$6552 \cdot 7$	3.816422
			3414707.0 352	$\begin{array}{llll}161 & 55 & 59 \cdot 7\end{array}$	Bug.	$19776 \cdot 6$	4. 296151
			$3521205 \cdot 8$	17213131.0	Tundra	6394.8	3.805827
Monument No. 2.................	$\begin{array}{rrr} 69 & 35 & 22 \cdot 608 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$\begin{array}{r} 700 \cdot 6 \\ 0.0 \end{array}$	$\begin{array}{r}29 \\ 145 \\ 145 \\ \hline 1\end{array}$	209 3051 3 19.8	Mosquito..	$17131 \cdot 3$	$4 \cdot 233790$
			$1452108 \cdot 6$	$\begin{array}{llllllllllll}325 & 11 & 09 \cdot 2\end{array}$	Demarcation	$12114 \cdot 8$	4.083318
			1622923.4	$3422547 \cdot 3$	Polar	8259.7	3.916965
			180 1800000	0 1530000	Monument No.	6280-5	3.797992
			$3334142 \cdot 5$	$153 \quad 5035 \cdot 2$	Bug. .	13949.6	4-144562
Monument No. 3.................	$\begin{array}{r}69 \\ 141 \\ \hline 100\end{array}$	$\begin{array}{r} 1564 \cdot 6 \\ 0 \cdot 0 \end{array}$	$\begin{array}{r}45 \\ 45 \\ 180 \\ \hline 0000.8\end{array}$	2254331.3 0	Mosquito......	11895 -3	4.075375
			$1800000 \cdot 0$	$\begin{array}{llll}0 & 00 & 00 \cdot 0\end{array}$	Monument No. 2	$6573 \cdot 4$	3.817790
			180 3000000	0 $130000 \cdot 0$	Monument No. 1	12853.9	4.109036
			$3134903 \cdot 0$	$1335755 \cdot 5$	Bug....	$8567 \cdot 3$	3.932844
Monument No. 4 (Et of the Boundary)	$6928 \quad 30 \cdot 129$	933.7	$\begin{array}{lll}180 & 00 & 00 \cdot 0\end{array}$	0 00 $00 \cdot 0$	Monument No. 3	$6208 \cdot 8$	$3 \cdot 793008$
	$1410000 \cdot 000$	$0 \cdot 0$	0 00 $00 \cdot 0$ 1 21 $34 \cdot 1$	$\begin{array}{llll}180 & 00 & 00 \cdot 0\end{array}$	Monument No. 5	$6347 \cdot 9$	$3 \cdot 802633$
			$242134 \cdot 1$	$2041150 \cdot 4$	Borealis.	$16544 \cdot 4$	4.218650
Monument No. 5 (Z_{1} of the Boundary)	$\begin{array}{rlrl} 69 & 25 & 05 \cdot 280 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$\begin{array}{r} 163.6 \\ 0.0 \end{array}$	0 000000	$\begin{array}{llll}180 & 00 & 00 & 0\end{array}$	Monument No. 8	13332 .9	4.124924
			$\begin{array}{rrrr}38 & 02 & 02 \cdot 0\end{array}$	$\begin{array}{rrrr}217 & 52 & 18 \cdot 4\end{array}$	Borealis.	$11075 \cdot 4$	4.044360
			$\begin{array}{lll} \\ 334 & 03 & 28 \cdot 2\end{array}$	rer 154 154	Bug. Pass.	$9061 \cdot 2$ 9641.1	3.957185 3.984127
Monument No. 6.................		49.6 0.0	$\begin{array}{rrrr}0 & 00 & 00 \cdot 0 \\ 54 & 22 & 10.2\end{array}$	$\begin{array}{llll}180 & 00 & 00 \cdot 0 \\ 234 & 12 & 26 \cdot 6\end{array}$	Monument No. 8	9500.3 8395.6	3.977737
	$1410000 \cdot 000$	$0 \cdot 0$	$\begin{array}{rrr}54 & 22 & 10 \cdot 2 \\ 133 & 31 & 06 \cdot 9\end{array}$	$\begin{array}{llll}234 & 12 & 26 \cdot 6 \\ 313 & 18 & 51.8\end{array}$	Borealis. Mosquito	8395.6 11786.0	3.924052 4.071365
			$180 \quad 00 \quad 00 \cdot 0$	00000.0	Monument No.	11783.0 3832.6	$4 \cdot 071365$ 3.583494
	692113.55 14100	419.9 0.0		1800000	Monument No. 8	6152	3.78901
	$1410000 \cdot 00$	$0 \cdot 0$	771545 1800000	257 0 0602	Borealis...	6996	$3 \cdot 84485$
					Monument No.	3348	$3 \cdot 52478$
Monument No. 8 (Y_{1} of the Boundary)	$\begin{array}{rrr} 69 & 17 & 55 \cdot 024 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$\begin{array}{r} 1705 \cdot 1 \\ 0 \cdot 0 \end{array}$	$00000 \cdot 0$	$1800000 \cdot 0$	Monument No. 12	$16602 \cdot 5$	4-220174
			16 $5601 \cdot 0$ 22 07	$\begin{array}{rl}196 & 51 \\ 42 & 32 \cdot 5\end{array}$	Grizzly	$10854 \cdot 6$	$4 \cdot 035612$
			222 $220739 \cdot 1$	$421339 \cdot 7$	Pass.	$6287 \cdot 6$	3.798487
			228 3 $1503 \cdot 0$	$482647 \cdot 0$	Backhou	$11022 \cdot 6$	$4 \cdot 042286$
			$\begin{array}{llll}345 & 14 & 32 \cdot 7\end{array}$	1652129.4	Empire	19331.6	$4 \cdot 286268$
	$69 \quad 15 \quad 12 \cdot 862$	$398 \cdot 6$	$3032 \quad 21 \cdot 0$	$2102752 \cdot 5$	Grizzly	6221.9	3.793926
	$1410000 \cdot 000$	$0 \cdot 0$	$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 8	$5025 \cdot 1$	$3 \cdot 701144$
			$27248 \quad 10 \cdot 2$	$925729 \cdot 3$	Aurora	6577-8	3.818083
Monument No. 10^{1}.		$642 \cdot 4$		2692835	Grizzly .	$3161 \cdot 2$	$3 \cdot 49991$
	$1410000 \cdot 00$	$0 \cdot 0$	1800000	00000	Monument No. 9	$5334 \cdot 5$	3.72706
Monument No. 11................	$\begin{array}{rrrr}69 & 10 & 23 \cdot 601 \\ 141 & 00 & 00 \cdot 000\end{array}$	731.4	$1595104 \cdot 1$	$3394120 \cdot 9$	Borealis.	$19810 \cdot 3$	$4 \cdot 296892$
		$0 \cdot 0$	$1800000 \cdot 0$	$\begin{array}{ll}0 & 00 \\ 0 & 00 \cdot 0\end{array}$	Monument No. 8	13988.6	$4 \cdot 145775$
			$\begin{array}{llll}180 & 00 & 00 \cdot 0\end{array}$	$00000 \cdot 0$	Monument No. 10	$3629 \cdot 6$	$3 \cdot 559859$
			$3134148 \cdot 7$	$1334845 \cdot 2$	Empire.	$6810 \cdot 9$	3.833206
Monument No. 12 (X_{1} of the Boundary)	$\begin{array}{r} 6908 \\ 69 \cdot 245 \\ 14100 \\ \hline 00 \cdot 000 \end{array}$	$1835 \cdot 9$	$00000 \cdot 0$	$1800000 \cdot 0$	Monument No. 17.	$22320 \cdot 8$	$4 \cdot 348709$
		$0 \cdot 0$	$1800000 \cdot 0$	$\begin{array}{ll}0 & 00 \\ 0000\end{array}$	Monument No. 11..	2613.9	$3 \cdot 417289$
			$\begin{array}{llll}293 & 00 & 39.9 \\ 355 & 10 & 15 \cdot 4\end{array}$	$\begin{array}{llll}113 & 07 & 36 \cdot 4\end{array}$	Empire.	$5350 \cdot 0$	$3 \cdot 728357$
			$3551015 \cdot 4$	$1751234 \cdot 0$	Tub.	$19611 \cdot 8$	$4 \cdot 292518$
Monument No. 13.........	$\begin{array}{rrrr} 69 & 07 & 34 \cdot 726 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$1076 \cdot 1$	$00000 \cdot 0$	$1800000 \cdot 0$			
		$0 \cdot 0$	$\begin{array}{llll}180 & 00 & 00 \cdot 0\end{array}$	$00000 \cdot 0$	Monument No. 12..	$2619 \cdot 0$	$3 \cdot 418135$
			$\begin{array}{llll}263 & 53 & 00 \cdot 7 \\ 354 & 25 & 40 \cdot 8\end{array}$	$835957 \cdot 2$ 17457	Empire.	$4952 \cdot 5$	$3 \cdot 694826$
			$3542540 \cdot 8$	1742759.4	Tub.	$17003 \cdot 5$	$4 \cdot 230539$
Monument No. 14............... .	$\begin{array}{r} 690408 \cdot 576 \\ 1410000 \cdot 000 \end{array}$	265.8	$00000 \cdot 0$	$1800000 \cdot 0$	Monument No. 17.	$13313 \cdot 7$	$4 \cdot 124300$
		$0 \cdot 0$	$\begin{array}{llll}142 & 59 & 46 \cdot 1\end{array}$	$3225035 \cdot 2$	Republic..........	$10815 \cdot 5$	$4 \cdot 034045$
			$\begin{array}{lllll}180 & 00 & 00 \cdot 0\end{array}$	$00000 \cdot 0$	Monument No. 13	$6388 \cdot 0$	$3 \cdot 805365$
			$\begin{array}{lll}215 & 27 & 09 \cdot 7 \\ 351 & 05 & 36 \cdot 8\end{array}$	35 34 $1710705 \cdot 1$	Empire..	$8489 \cdot 8$	3.928896
			$3510536 \cdot 8$	$1710755 \cdot 3$	Tub.	$10663 \cdot 7$	$4 \cdot 027909$
Monument No. 15................	$\begin{array}{rrr}69 & 01 & 46.447 \\ 141 & 00 & 00.000\end{array}$	$1439 \cdot 3$	$00000 \cdot 0$	$1800000 \cdot 0$	Monument No. 17.	8909.5	3.949855
		$0 \cdot 0$	$\begin{array}{llll}180 & 00 & 00 \cdot 0\end{array}$	$\begin{array}{ll}0 & 00 \\ 0 & 00 \cdot 0\end{array}$	Monument No. 14.	$4404 \cdot 2$	$3 \cdot 643867$
			$\begin{array}{llll}203 & 30 & 35 \cdot 2 \\ 344 & 55 & 42.9\end{array}$	23 $1645831 \cdot 5$	Empire.	$12344 \cdot 6$	$4 \cdot 091477$
			$3445542 \cdot 9$	$1645801 \cdot 4$	Tub..	$6349 \cdot 4$	$3 \cdot 802731$

[^42]GEOGRAPHIC POSITIONS OF BOUNDARY MONUMENTS-Continued.

Stations.	Latitude. and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To stations.	Distance.	Logarithms.
Monument No. 16	- , "		- , "	"		Meters.	
	$\begin{array}{rrr}69 & 00 & 15 \cdot 750 \\ 141100 & 00.000\end{array}$		$\begin{array}{llll}180 & 00 & 00 \cdot 0 \\ 180 & 00 & 00 \cdot 0\end{array}$	$\begin{array}{llll}0 & 00 & 00 \cdot 0 \\ 0 & 00 & 00 \cdot 0\end{array}$	Monument No. 12......	16221.8 2810.4	$4 \cdot 210098$
	$1410000 \cdot 000$	$0 \cdot 0$	$\begin{array}{lll}180 & 00 \\ 199 & 12 & 47 \cdot 1\end{array}$	$00000 \cdot 0$ $191943 \cdot 4$	Monument No. 15. Empire...............	$2810 \cdot 4$ $14963 \cdot 8$	$\begin{aligned} & 3 \cdot 448768 \\ & 4 \cdot 175043 \end{aligned}$
			$3542334 \cdot 6$	$1742615 \cdot 7$	Turner.	$19803 \cdot 1$	$4 \cdot 296734$
Monument No. 17 (Wry) of the Bound-ary)	$\begin{array}{r}68 \\ 56 \\ 141 \\ \hline 1\end{array}$	$1825 \cdot 6$0.0	$\begin{array}{llll}0 & 00 & 00 \cdot 0 \\ 3 & 25 & 07 & 0\end{array}$	$\begin{array}{llll}180 & 00 & 00 \cdot 0 \\ 183 & 23 & 30 \cdot 9\end{array}$	Monument No. 20.	15499.6	$4 \cdot 190320$
	$1410000 \cdot 000$		$32507 \cdot 6$ 80	$1832330 \cdot 9$	Riggs........	$19515 \cdot 1$	$4 \cdot 290370$
			$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 16	$6099 \cdot 2$	$3 \cdot 785273$
			210 3513	$304524 \cdot 0$	Tub.	$3232 \cdot 0$	$3 \cdot 509478$
			$3515429 \cdot 4$	$1715710 \cdot 6$	Turner	$13746 \cdot 1$	$4 \cdot 138179$
Monument No. 18................	68 $14410 \cdot 353$	$320 \cdot 8$	$\begin{array}{llll}180 & 00 & 00 \cdot 0 \\ 101 & 39 & 28 \cdot 5\end{array}$	$\begin{array}{rrrr}0 & 00 & 00.0 \\ 11\end{array}$	Monument No. 17.	$5223 \cdot 3$	3.717947
	$1410000 \cdot 000$	$0 \cdot 0$	$\begin{array}{llll}191 & 39 & 28 \cdot 5\end{array}$	$114147 \cdot 0$	Tub.	$8170 \cdot 4$	3.912245
Monument No. 19................	$\begin{array}{r} 685041 \cdot 740 \\ 1410000 \cdot 000 \end{array}$	$\begin{array}{r} 1293.3 \\ 0.0 \end{array}$	$82936 \cdot 8$	$1882800 \cdot 2$	Riggs	$7879 \cdot 3$	$3 \cdot 896485$
			$1800000 \cdot 0$	$\begin{array}{ll}0 & 00\end{array} 00 \cdot 0$	Monument No. 18.	$6464 \cdot 3$	$3 \cdot 810522$
			$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 17	11887.5	$4 \cdot 067721$
			$\begin{array}{llll}186 & 30 & 39 \cdot 3\end{array}$	63257.6	Tub..	14559.9	$4 \cdot 163160$
			$3144815 \cdot 1$	$1345056 \cdot 2$	Turner	$2727 \cdot 0$	$3 \cdot 435693$
Monument No. 20 (V_{1} of the Boundary)	$\begin{array}{r} 6848 \quad 38 \cdot 715 \\ 1410000 \cdot 000 \end{array}$	$\begin{array}{r} 1199.6 \\ 0 \cdot 0 \end{array}$	$\begin{array}{llll}180 & 00 & 00 \cdot 0\end{array}$	000000	Monument No. 19.	$3812 \cdot 1$	$3 \cdot 581160$
			$\begin{array}{llll}225 & 40 & 00 \cdot 8 \\ 323 & 47 & 30 \cdot 8\end{array}$	45 42 143 53	Turner.	$2705 \cdot 1$	3.432177
			$3234730 \cdot 8$	$1435331 \cdot 7$	Incog.	$7365 \cdot 6$	$3 \cdot 867210$
			$161745 \cdot 4$	$1961608 \cdot 8$	Riggs.	$4147 \cdot 4$	$3 \cdot 617773$
Monument No. 21................	$\begin{array}{rrr} 68 & 44 & 56 \cdot 750 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$\begin{array}{r} 1758 \cdot 4 \\ 0 \cdot 0 \end{array}$	$00000 \cdot 0$	$1800000 \cdot 0$	Monument No. 22.	$3161 \cdot 3$	$3 \cdot 499869$
			$\begin{array}{ll}39 & 3603 \cdot 7\end{array}$	$\begin{array}{ll}219 & 22 \\ 31 & 31 \cdot 6\end{array}$	Silver.	$15445 \cdot 7$	4-188807
			$624414 \cdot 9$	$2423308 \cdot 0$	Albion	$9064 \cdot 1$	3.957323
			$\begin{array}{llll}158 & 06 & 52 \cdot 5\end{array}$	$\begin{array}{llll}338 & 05 & 15 \cdot 8\end{array}$	Riggs.	$3122 \cdot 0$	3.494439
			$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 20	$6877 \cdot 8$	$3 \cdot 837450$
			$1922639 \cdot 3$ 257523	$122920 \cdot 3$	Turner...	$8979 \cdot 1$	3.953234
			$2575235 \cdot 3$	$775836 \cdot 2$	Incog.	$4450 \cdot 3$	$3 \cdot 648388$
Monument No. 22 (U_{1} of the Boundary)	$\begin{array}{rrr} 68 & 43 & 14 \cdot 725 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$\begin{array}{r} 456 \cdot 3 \\ 0 \cdot 0 \end{array}$	$\begin{array}{llll}180 & 00 & 00 \cdot 0\end{array}$	$\begin{array}{llll}0 & 00 & 00 \cdot 0\end{array}$	Monument No. 20.	$10039 \cdot 1$	$4 \cdot 001695$
			$\begin{array}{rrrr}189 & 12 & 46 \cdot 3 \\ 48 & 24 & 21 \cdot 0\end{array}$	$\begin{array}{rr}9 & 15 \\ 228 & 27 \cdot 3 \\ 29.0\end{array}$	Turner.	12085.4 13165.0	4.082260
			$482421 \cdot 0$ 8259 $26 \cdot 0$	$\begin{array}{llll}228 & 10 & 49 \cdot 0 \\ 262 & 48 & 19 \cdot 2\end{array}$	Silver.	13165.0 8117.9	4.119420 3.909443
			$825926 \cdot 0$ 1284301.9	$\begin{array}{llll}262 & 48 & 19 \cdot 2 \\ 308 & 26 & 01 \cdot 2\end{array}$	Albion	8117.9 15734.6	$3 \cdot 909443$
			$16907 \quad 35 \cdot 5$	$3490558 \cdot 9$	Riggs.	+6169.1	$3 \cdot 790223$
Monument No. 23.	$\begin{array}{rrr}68 & 40 & 35 \cdot 777 \\ 141 & 00 & 00 \cdot 000\end{array}$	1108.6	$\begin{array}{llll}180 & 00 & 00 \cdot 0\end{array}$	0 $00000 \cdot 0$	Monument No. 22	$4925 \cdot 2$	3.692424
		$0 \cdot 0$	$\begin{array}{llll}221 & 12 & 07 \cdot 7\end{array}$	411417.4	Firth.	$2381 \cdot 6$	$3 \cdot 376876$
			$3181245 \cdot 0$	$13817 \quad 17 \cdot 1$	Shark	$4955 \cdot 0$	$3 \cdot 695048$
Monument No. 24................. .	$\begin{array}{rrr} 68 & 37 & 59 \cdot 798 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$1852 \cdot 9$	$955424 \cdot 5$	$2754052 \cdot 6$	Silver	$9898 \cdot 1$	3.995554
		$0 \cdot 0$	$\begin{array}{llll}100 & 36 & 41 \cdot 0\end{array}$	$\begin{array}{llll}280 & 33 & 26 \cdot 4\end{array}$	Firth River, South Base..	$2402 \cdot 5$	3.380663
			$\begin{array}{llll}137 & 25 & 03 \cdot 5\end{array}$	$\begin{array}{llll}317 & 13 & 56 \cdot 9\end{array}$	Albion.	$11907 \cdot 5$	$4 \cdot 075820$
			$\begin{array}{llll}180 & 00 & 00 \cdot 0\end{array}$	$\begin{array}{llll}0 & 00 & 00 \cdot 0\end{array}$	Monument No. 22.	$9758 \cdot 2$	3.989370
			$\begin{array}{llll}180 & 00 & 00 \cdot 0\end{array}$	$\begin{array}{llll}0 & 00 & 00 \cdot 0\end{array}$	Monument No. 23.	$4833 \cdot 1$	$3 \cdot 684225$
			$\begin{array}{llll}193 & 19 & 20 \cdot 8\end{array}$	$132130 \cdot 6$	Firth.	$6808 \cdot 2$	$3 \cdot 833033$
			$2505831 \cdot 8$	$71 \quad 0304 \cdot 0$	Shark	$3492 \cdot 7$	$3 \cdot 543157$
Monument No. 25.................	$\begin{array}{rrr} 68 & 35 & 14 \cdot 006 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$\begin{array}{r} 434 \cdot 0 \\ 0 \cdot 0 \end{array}$	$\begin{array}{r}47 \\ \hline 120 \\ \hline 18.9\end{array}$	$\begin{array}{llll}226 & 48 & 38 \cdot 7\end{array}$	Coral.	$12680 \cdot 0$	$4 \cdot 103119$
			$1220054 \cdot 4$	$30147 \quad 22 \cdot 7$	Silver.	11611.7	$4 \cdot 064894$
			$\begin{array}{llll}149 & 54 & 34 \cdot 3\end{array}$	$3294327 \cdot 8$	Albion.	$16070 \cdot 5$	$4 \cdot 206030$
			$\begin{array}{llll}180 & 00 & 00 \cdot 0\end{array}$	$\begin{array}{llll}0 & 00 & 00 \cdot 0\end{array}$	Monument No. 22.	14895.4	$4 \cdot 173053$
			$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 24.......	$5137 \cdot 1$	$3 \cdot 710718$
			$2074501 \cdot 9$	$274934 \cdot 2$	Shark.......	$7091 \cdot 3$	$3 \cdot 850727$
Monument No. 26 (T_{1} of the Boundary).	$\begin{array}{rrr} 68 & 33 & 21 \cdot 511 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$\begin{array}{r} 666.5 \\ 0.0 \end{array}$			Monument No. 22......		
			$\begin{array}{lll}347 & 48 & 16 \cdot 0 \\ 356 & 29 & 01 \cdot 3\end{array}$	$\begin{array}{llll}167 & 49 & 50 \cdot 1 \\ 176 & 30 & 37 \cdot 7\end{array}$	$\operatorname{Jim}_{\text {Lynx. }}$	$5438 \cdot 3$ 19294.8	$3 \cdot 735464$ $4 \cdot 285441$
			$6055 \quad 23.2$	2404243.4	Coral.	$10614 \cdot 6$	$4 \cdot 025905$
			$\begin{array}{llll}134 & 23 & 59 \cdot 9\end{array}$	$3141028 \cdot 3$	Silver.................	$13780 \cdot 2$	$4 \cdot 139256$
			$\begin{array}{llll}165 & 23 & 58 \cdot 5\end{array}$	$\begin{array}{llll}345 & 20 & 44 \cdot 0\end{array}$	Firth River, South Base. .	$9367 \cdot 8$	3.971639
			$1683844 \cdot 3$		Firth River, North Base..	$11366 \cdot 0$	$4 \cdot 055607$
Monument No. $27 . \ldots . .$.	68 30 $06 \cdot 848$ 141 00 $00 \cdot 000$	$212 \cdot 2$	$152123 \cdot 7$	$1951605 \cdot 1$	Watt.	$14788 \cdot 1$	$4 \cdot 169912$
		0.0	$95 \quad 2236 \cdot 5$	$\begin{array}{llll}275 & 09 & 56 \cdot 8\end{array}$	Coral.	$9317 \cdot 9$	3.969316
			$1800000 \cdot 0$	$\begin{array}{llll}0 & 00 & 00 \cdot 0\end{array}$	Monument No. 26......	$6031 \cdot 7$	$3 \cdot 780437$
			$3545314 \cdot 5$	$1745451 \cdot 0$	Lynx.................... .	13279.7	$4 \cdot 123188$
Monument No. 28.	$\begin{array}{rrr} 68 & 26 & 11 \cdot 283 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$349 \cdot 6$	$00000 \cdot 0$	$1800000 \cdot 0$	S_{1} of the Boundary.	$5290 \cdot 4$	$3 \cdot 723490$
		$0 \cdot 0$	$292141 \cdot 7$	$\begin{array}{llll}209 & 16 & 23 \cdot 1\end{array}$	Watt........... . .	$7987 \cdot 2$	$3 \cdot 902393$
			1312237.9	$\begin{array}{llll}311 & 09 & 58.4\end{array}$	Coral.	12363.0	$4 \cdot 092123$
			$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 27.	$7299 \cdot 0$	$3 \cdot 863261$
			$00000 \cdot 0$	$1800000 \cdot 0$	Monument No. 29...... .	$5285 \cdot 2$	$3 \cdot 723061$
			$18809 \quad 25 \cdot 0$	$81059 \cdot 1$	Jim.................... .	$8096 \cdot 9$	$3 \cdot 908321$
Monument No. 29. 17.1 feet north of S_{1} of the Boundary.	$\begin{array}{llll}68 & 23 & 20 \cdot 709\end{array}$	$641 \cdot 7$					
				$00000 \cdot 0$	Monument No. 26.	18621.0	$4 \cdot 270004$
	141$140000 \cdot 000$	$\begin{array}{r} 636.5 \\ 0.0 \end{array}$	184 186 18	$45739 \cdot 6$	Jim..............	13354.9	$4 \cdot 125642$
			$2981844 \cdot 7$	$\begin{array}{ll}118 & 2021.0\end{array}$	Lynx......	$1344 \cdot 2$	$3 \cdot 128463$
			$1075617 \cdot 4$	2874309.4	Wee.	$10162 \cdot 1$	$4 \cdot 006984$
			$1452547 \cdot 0$	$3251307 \cdot 6$	Coral.	$16349 \cdot 3$	$4 \cdot 213499$

GEOGRAPHIC POSITIONS OF BOUNDARY MONUMENTS—Continued.

[^43]GEOGRAPHIC POSITIONS OF BOUNDARY MONUMENTS-Continued.

[^44]GEOGRAPHIC POSITIÓNS OF BOUNDARY MONUMENTS-Continued.

Stations.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To stations.	Distance.	Logarithms.
Monument No. 57................	"		- , "	"		Meters.	
	1411400	$\begin{array}{r} 74 \cdot 2 \\ 0 \cdot 0 \end{array}$	$00000 \cdot 0$	$\begin{array}{llll}180 & 00 & 00 \cdot 0\end{array}$	Monument No. 58	4251.9	$3 \cdot 628583$
			$4413 \quad 36 \cdot 3$	$2240602 \cdot 6$	Arch 2.	$8514 \cdot 7$	3.930169
			1462651.5	$32623 \quad 25 \cdot 8$	N. A.	$4851 \cdot 1$	$3 \cdot 685842$
			$1503133 \cdot 4$	$\begin{array}{llll}330 & 23 & 25 \cdot 7\end{array}$	Junction 2.	$12882 \cdot 3$	4. 109992
			$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 56	$6059 \cdot 5$	$3 \cdot 782434$
Monument No. 58 $45 \cdot 0$ feet north of N_{1} of the Boundary..	$670745 \cdot 149$	$1398 \cdot 7$					
	$670744 \cdot 706$	$1385 \cdot 0$	$2641447 \cdot 4$	$842916 \cdot 0$	Kite.	$11416 \cdot 5$	$4 \cdot 057533$
	$1410000 \cdot 000$	0.0		1681141.4	Salmon	$26780 \cdot 8$	4.427824
			${ }^{0} 0000 \cdot 0$	$1800000 \cdot 0$	M_{1} of the Boundary	$33840 \cdot 0$	4.529431
			$1643400 \cdot 8$	3442621.4	Chasm. .	$22386 \cdot 5$	4.349987
Monument No. $59{ }^{1}$	$670423 \cdot 38$$1410000 \cdot 00$	$724 \cdot 3$	1800000	00000	N_{1} of the Boundary	$6236 \cdot 9$	$3 \cdot 79497$
		$0 \cdot 0$	3323926	1524505	Battle...	$9699 \cdot 1$	3.98673
Monument No. 60.................	$670142 \cdot 370$	$1312 \cdot 7$	$543200 \cdot 8$	$\begin{array}{lll}234 & 2209.2\end{array}$	Lone.	$9568 \cdot 7$	3.980852
	$1410000 \cdot 000$	$0 \cdot 0$	$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 59	$4988 \cdot 1$	$3 \cdot 697938$
			$3090914 \cdot 7$	$1291453 \cdot 1$	Battle.	$5744 \cdot 9$	$3 \cdot 759283$
Monument No. 61.................	$\begin{array}{rrr}66 & 58 & 09 \cdot 327 \\ 141 & 00 & 00 \cdot 000\end{array}$	288.9	$973930 \cdot 2$	2772938.8	Lone.	7863.4	3.895610
		$0 \cdot 0$	$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 60	$6599 \cdot 9$	3.819539
Monument No. 62................	661411460600	761.8	$315318 \cdot 6$	$2115035 \cdot 1$	N. C.	$4092 \cdot 8$	$3 \cdot 612016$
		$0 \cdot 0$	$\begin{array}{llll}180 & 00 & 00 \cdot 0\end{array}$	$00000 \cdot 0$	Monument No. 61	$3244 \cdot 6$	3.511157
			2491719.5	$691906 \cdot 8$	N. B	$1515 \cdot 3$	3-180498
Monument No. 63................	$\begin{array}{rrr}66 & 53 & 13 \cdot 115 \\ 141 & 00 & 00 \cdot 000\end{array}$	$406 \cdot 3$	$00000 \cdot 0$	$1800000 \cdot 0$	Monument No. 64	$6843 \cdot 5$	3.835278
		$0 \cdot 0$	$1383859 \cdot 1$	$3183615 \cdot 6$	N. C.....	$3272 \cdot 6$	3. 514892
			$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 62	$5931 \cdot 8$	3.773183
			$1922138 \cdot 9$	$122326 \cdot 3$	N. B.	$6621 \cdot 1$	$3 \cdot 820933$
Monument No. 64 $15 \cdot 35$ feet south of M_{1} of the Boundary	$664932 \cdot 209$	$997 \cdot 8$					
	$\begin{array}{r} 664932 \cdot 360 \\ 14100 \\ 00 \cdot 000 \end{array}$	$\begin{array}{r} 1002 \cdot 4 \\ 0 \cdot 0 \end{array}$	3034753.5	$1235945 \cdot 6$	Mesa.	$11404 \cdot 4$	4.057074
			$00000 \cdot 0$	$1800000 \cdot 0$	Monument No. 68	21757.9	$4 \cdot 337617$
			$331512 \cdot 8$	$2130850 \cdot 8$	Fort.	$9276 \cdot 3$	3.967375
			$2155510 \cdot 5$	$360208 \cdot 6$	Salmon	$9430 \cdot 0$	3.974513
Monument No. 65.................	$664714 \cdot 612$	$452 \cdot 6$	$553240 \cdot 5$	2352618.6	Fort	$6168 \cdot 8$	$3 \cdot 790203$
	$1410000 \cdot 000$	$0 \cdot 0$	$180 \quad 0000 \cdot 0$	$00000 \cdot 0$	M_{1} of the Boundary	$4267 \cdot 2$	$3 \cdot 630145$
			$2822135 \cdot 6$	$1023327 \cdot 6$	Mesa.......	$9702 \cdot 0$	3.986860
Monument No. 66.................. .	$664302 \cdot 815$	87.2	$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 65	$7800 \cdot 2$	3.892106
	$1410000 \cdot 000$	$0 \cdot 0$	$2431224 \cdot 3$	$6314 \quad 27 \cdot 2$	N. D.	$1836 \cdot 9$	$3 \cdot 264093$
			$350 \quad 27 \quad 37 \cdot 3$	$170 \quad 2950 \cdot 0$	Black Rive	10728.9	$4 \cdot 030555$
Monument No. 67.................	663914114	$231 \cdot 0$	1561927.9	$3361306 \cdot 2$	Fort...		
		$0 \cdot 0$	$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 66	7291.0	3.862787
			$3313627 \cdot 5$	$1513840 \cdot 1$	Black Rive	$3739 \cdot 4$	
Monument No. 68, (L_{1} of the Boundary	$\begin{array}{rrr} 66 & 37 & 49 \cdot 997 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$1548 \cdot 8$	$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 66.	$9690 \cdot 5$	3.986345
		$0 \cdot 0$	$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 67.	$2399 \cdot 5$	$3 \cdot 380124$
			$00000 \cdot 0$	$1800000 \cdot 0$	Monument No. 73.	$24049 \cdot 1$	$4 \cdot 381098$
			1600159.4	$3395537 \cdot 7$	Fort.	$14896 \cdot 0$	4-173069
			$1903930 \cdot 5$	$104628 \cdot 3$	Salmon	$29910 \cdot 8$	4.475828
			$345 \quad 2054 \cdot 8$	$165 \quad 2705 \cdot 4$	Arctic.	$19783 \cdot 5$	4. 296303
	$663442 \cdot 26$$1410000 \cdot 00$	$1309 \cdot 1$	1800000	00000	Monument No. 68.	$5815 \cdot 7$	$3 \cdot 76460$
		0.0	3392459	1593110	Arctic.	$14233 \cdot 1$	4-15330
Monument No. 70.................	$663255 \cdot 265$	$1712 \cdot 0$	$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 68.	$9130 \cdot 0$	3.960471
	$1410000 \cdot 000$	$0 \cdot 0$	180 00 $00 \cdot 0$ 333 26 18	$00000 \cdot 0$	Monument No. 69.	$3314 \cdot 4$	$3 \cdot 520405$
			$3332623 \cdot 8$	$1533234 \cdot 3$	Arctic	11191.2	4.048878
Monument No. 71................	6614114	$1330 \cdot 5$	1010909	2805711	Circle. . . .	$9864 \cdot 4$	
		$0 \cdot 0$	1800000	00000	Monument No. 70	5957.3	$3 \cdot 77505$
			1870916	71028	Black River.	$14305 \cdot 4$	4-15550
	$\begin{array}{rl}66 & 26 \\ 141 & 18.808 \\ 1400.00\end{array}$				Circle.	$12705 \cdot 4$	4-103988
		$0 \cdot 0$	$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 68	21411.2	4.330641
			$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 71	$6323 \cdot 7$	$3 \cdot 800971$
			$18457 \quad 07 \cdot 7$	$459 \quad 20 \cdot 2$	Black River	$20598 \cdot 0$	4.313826
Monument No. 73, (K_{1} of the Boundary	$\begin{array}{rrr} 66 & 24 & 53 \cdot 652 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$1662 \cdot 0$	$180 \quad 0000 \cdot 0$	$00000 \cdot 0$	Monument No. 69.	$18233 \cdot 5$	4-260867
		$0 \cdot 0$	$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 70	14919.0	$4 \cdot 173740$
			$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 71	$8961 \cdot 5$	3.952384
			$\begin{array}{llll}138 & 19 & 06 \cdot 1\end{array}$	318 45 4 $0708 \cdot 7$	Circle.	$14553 \cdot 8$	$4 \cdot 162976$
			$\begin{array}{llll}225 & 33 & 00 \cdot 3\end{array}$	$\begin{array}{llll}45 & 39 & 10 \cdot 6\end{array}$	Arctic.	$7009 \cdot 7$	3.845702
			3332011.6	1532459.0	Curve.	8693.4	3.939188
			357 50 0119.9	$\begin{array}{llll}177 & 02 & 35 \cdot 2\end{array}$	Fishing	$19739 \cdot 8$	4.295342
			50 180 02 59	$2295316 \cdot 5$	Igloo..	$10318 \cdot 8$	$4 \cdot 013630$
			$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 72	$2637 \cdot 9$	$3 \cdot 421258$

[^45]GEOGRAPHIC POSITIONS OF BOUNDARY MONUMENTS—Continued.

[^46]GEOGRAPHIC POSITIONS OF BOUNDARY MONUMENTS-Continued.

Stations.	Latitude. and longitude.	$\begin{aligned} & \text { Seconds } \\ & \text { in } \\ & \text { meters. } \end{aligned}$	Azimuth.	Back azimuth.	To stations.	Distance.	Logarithms.
Monument No. 88 13.05 feet north of Skip of the Boundary	"		- , "	"		Meters.	
	$65 \quad 46 \quad 25 \cdot 57$	$785 \cdot 4$					
	$654625 \cdot 29$	781.4	$3034 \quad 04 \cdot 2$	$2102555 \cdot 2$	Change	$13477 \cdot 9$	$4 \cdot 129622$
	$1410000 \cdot 00$	$0 \cdot 0$	$\begin{array}{ll}180 & 00\end{array} 00 \cdot 0$	$00000 \cdot 0$	H_{1} of the Boundary	$11500 \cdot 6$	$4 \cdot 060721$
			$278 \quad 2143 \cdot 7$	$983021 \cdot 3$	Seal...............	7657.8	$3 \cdot 884104$
			. $3063845 \cdot 6$	$1264418 \cdot 4$	Diablo	$6232 \cdot 5$	$3 \cdot 794661$
	$\begin{array}{lll}65 & 44 & 03.36\end{array}$	$104 \cdot 1$	$\begin{array}{lll}0 & 00 & 00\end{array}$	1800000	Horse of the Boundary.	11679.9	4.06744
	$1410000 \cdot 00$	$0 \cdot 0$	30219	1830123	Union...............	$14877 \cdot 1$	$4 \cdot 17252$
			1800000	00000	Monument No. 88	$4398 \cdot 2$	$3 \cdot 64328$
Monument No. 90.................	$65 \quad 41 \quad 22 \cdot 456$	$695 \cdot 6$	$00000 \cdot 0$	$1800000 \cdot 0$	G_{1} of the Boundary....	$11811 \cdot 1$	$4 \cdot 072290$
	$1410000 \cdot 000$	$0 \cdot 0$	$43402 \cdot 2$	$\begin{array}{llll}184 & 33 & 06 \cdot 3\end{array}$	Union....	9903.8	3.995802
			720009.2 180	2515200.5	Change.........	7206.9	$3 \cdot 857750$
			$\begin{array}{llll}180 & 00 & 00 \cdot 0\end{array}$	0 $180000 \cdot 0$ 180000	Monument No. 89.	4983.8	3.697561
				$1800000 \cdot 0$	Monument No. 91.	$6697 \cdot 9$	$3 \cdot 825939$
Monument No. 91. $6 \cdot 25$ feet south of Horse of the Boundary	$653746 \cdot 212$	$1431 \cdot 3$	$00000 \cdot 0$	$1800000 \cdot 0$	Monument No. 92.	5117.8	$3 \cdot 709083$
	$653746 \cdot 274$	$1433 \cdot 3$	$00000 \cdot 0$	$1800000 \cdot 0$	G_{1} of the Boundary	$5115 \cdot 1$	$3 \cdot 708857$
	$1410000 \cdot 000$	$0 \cdot 0$	$13 \quad 56 \quad 36 \cdot 4$	$1935540 \cdot 5$	Union............	$3272 \cdot 8$	$3 \cdot 514924$
			$1230620 \cdot 3$	$30258 \quad 11 \cdot 7$	Change	$8182 \cdot 6$	3.912893
			$2555404 \cdot 2$	$760553 \cdot 2$	Scratch	$10259 \cdot 5$	$4 \cdot 011126$
Monument No. 92 $14 \cdot 9$ feet south of G_{1} of the Boundary	$653500 \cdot 982$	$30 \cdot 4$					
	$653501 \cdot 129$	$35 \cdot 0$	$00000 \cdot 0$	$\begin{array}{llll}180 & 00 & 00 \cdot 0\end{array}$	F_{1} of the Boundary	$25293 \cdot 8$	$4 \cdot 403014$
	$1410000 \cdot 000$	$0 \cdot 0$	$\begin{array}{llll}144 & 25 & 45 \cdot 6\end{array}$	$\begin{array}{llll}324 & 17 & 37 \cdot 1\end{array}$	Change..	11783.1	4.071259
			$\begin{array}{llll}157 & 51 & 52 \cdot 3\end{array}$	$\begin{array}{llll}337 & 50 & 56.4\end{array}$	Union.	$2093 \cdot 0$	$3 \cdot 320769$
			$\begin{array}{llllllllllll}159 & 18 & 57 \cdot 3\end{array}$	$3390741 \cdot 6$	Fire.	26681 - 1	$4 \cdot 426204$
			$\begin{array}{llll}232 & 34 & 33 \cdot 7\end{array}$	52 145 17	Scratch	12529.5	$4 \cdot 097935$
			$3250639 \cdot 5$	$14517 \quad 23 \cdot 0$	Lost. .	$15915 \cdot 8$	$4 \cdot 201828$
Monument No. 93.	65 32 1414	772.4	$\begin{array}{llll}154 & 34 & 47 \cdot 9\end{array}$	$\begin{array}{lll}334 & 26 & 39.5\end{array}$	Change.......... .	15968 . 0	$4 \cdot 203251$
	$1410000 \cdot 000$	$0 \cdot 0$	$\begin{array}{ll}180 & 00 \\ 000 \cdot 0\end{array}$	$00000 \cdot 0$	G_{1} of the Boundary	$4837 \cdot 8$	$3 \cdot 684646$
			$\begin{array}{llll}180 & 00 & 00 \cdot 0\end{array}$	$00000 \cdot 0$	Monument No. 92.	$4833 \cdot 2$	$3 \cdot 684235$
			218 37 $372 \cdot 2$	38 $13931 \cdot 1$	Scratch.	15939.4	$4 \cdot 202473$
			312 $12414 \cdot 7$ 0	$\begin{array}{llll}132 & 14 & 58 \cdot 1\end{array}$	Lost............	12263.8	$4 \cdot 088626$
			$00000 \cdot 0$	$1800000 \cdot 0$	Monument No. 94	$5215 \cdot 6$	
Arden of the Boundary	65 31 53.281	$1650 \cdot 3$	$00000 \cdot 0$	$1800000 \cdot 0$	F_{1} of the Boundary .	$19475 \cdot 5$	$4 \cdot 289488$
	$1410000 \cdot 000$	$0 \cdot 0$	$18000 \quad 00 \cdot 0$	$00000 \cdot 0$	G_{1} of the Boundary.	$5818 \cdot 3$	$3 \cdot 764795$
			$3082856 \cdot 9$	$1283940 \cdot 3$	Lost........	$11629 \cdot 6$	4-065565
Monument No. 94...................... $10 \cdot 4$ feet north of D'Arcy of the Boundary	$65 \quad 2936 \cdot 544$	$1131 \cdot 9$					
	$652936 \cdot 442$	$1128 \cdot 7$	$84812 \cdot 9$	$1884514 \cdot 8$	Casca.	$16555 \cdot 6$	4-218945
	$1410000 \cdot 000$	$0 \cdot 0$	$2920 \quad 37 \cdot 7$	$\begin{array}{llll}209 & 18 & 13 \cdot 3\end{array}$	Yellow.	$4172 \cdot 5$	3.620399
			$1560556 \cdot 3$	$3360156 \cdot 1$	Halley.................	$8358 \cdot 2$	3.922113
			$1800000 \cdot 0$	$00000 \cdot 0$	Arden of the Boundary...	$4238 \cdot 3$	3.627190
Monument No. $95{ }^{1}$.	$65 \quad 2648 \cdot 63$	$1506 \cdot 2$	00000	1800000	F_{1} of the Boundary	10039.4	4.00171
	$1410000 \cdot 00$	$0 \cdot 0$	1800000	170000	Monument No. 94.	$5200 \cdot 8$	$3 \cdot 71607$
			3561331	1761353	N. F.........	$4843 \cdot 4$	3-68515
Monument No. $96{ }^{1}$.	$\begin{array}{lll}65 & 24 & 05.59\end{array}$	$173 \cdot 1$	1691651	3491251	Halley	$18206 \cdot 7$	$4 \cdot 26023$
	$1410000 \cdot 00$	$0 \cdot 0$	1800000	00000	Arden of the Boundar	$14486 \cdot 0$	$4 \cdot 16095$
			1800000	00000	Monument No. 95.	$5049 \cdot 8$	$3 \cdot 70327$
			00000	1800000	Monument No. 97.	$4991 \cdot 6$	$3 \cdot 69824$
Monument No. 97. $6 \cdot 0$ feet south of F_{1} of the Boundary	$65 \quad 2124 \cdot 430$	$756 \cdot 7$					
	$65 \quad 21 \quad 24 \cdot 489$	758.5					
	$1410000 \cdot 000$	$0 \cdot 0$	$00000 \cdot 0$	$1800000 \cdot 0$	Monument No. 99.	9623.4	3.983330
				$2460224 \cdot 4$	Casca.	2771.7	$3 \cdot 442739$
			$\begin{array}{llll}170 & 00 & 11 \cdot 3\end{array}$	$3495747 \cdot 0$	Yellow	11778.9	4.071103
			216381636.4 301	36 49 1219	Lost..	$15253 \cdot 2$	4.183362
			$\begin{array}{lll}301 & 39 & 20 \cdot 8 \\ 338 & 43 & 44 \cdot 5\end{array}$	121 45 158 48	Lime, V ,	$5828 \cdot 1$ 10679.1	3.765527 4.028536
Monument No. $98{ }^{1}$.	$65 \quad 2010 \cdot 45$	$323 \cdot 7$	1144701		Casca............		
	$1410000 \cdot 00$	$0 \cdot 0$	1800000	00000	F_{1} of the Boundary	$2293 \cdot 3$	$3 \cdot 36046$
			1800000	00000	Monument No. 97......	$2291 \cdot 3$	$3 \cdot 36008$
Monument No. 99 (E_{1} of the Boundary).	$\begin{array}{rll} 65 & 16 & 13.718 \end{array}$	$426 \cdot 7$	3520509.4	$\begin{array}{llll}172 & 07 & 06 \cdot 5\end{array}$	Back.	$12196 \cdot 6$	$4 \cdot 086237$
	$1410000 \cdot 000$	$0 \cdot 0$	$151748 \cdot 0$	$1951351 \cdot 8$	Pack	$12845 \cdot 9$	$4 \cdot 108765$
Monument No. $100^{1} \ldots$.	$65 \quad 12 \quad 13 \cdot 65$	$422 \cdot 8$	2891243	1091356	East.	$1101 \cdot 1$	$3 \cdot 041839$
	$1410000 \cdot 00$	$0 \cdot 0$	3565802	1765804	Talus	$696 \cdot 0$	$2 \cdot 842616$
			403004	2202857	West.	$1483 \cdot 7$	$3 \cdot 171351$

[^47]GEOGRAPHIC POSITIONS OF BOUNDARY MONUMENTS-Continued.

Stations.	Latitude and longitude.	$\begin{aligned} & \text { Seconds } \\ & \text { in } \\ & \text { meters. } \end{aligned}$	Azimuth.	Back azimuth.	To stations.	Distance.	Logarithms.
Monument No. 101.................	"		- , "	"		Meters.	
	$\begin{array}{r}65 \\ 09 \\ \hline 141\end{array} 00$ 34.63	1072.6 0.0	$\begin{array}{rrr}260 & 27 & 52 \\ 0 & 00 & 00\end{array}$	$\begin{array}{r}80 \\ 180 \\ \hline 109\end{array}$	Back.......	$1702 \cdot 8$ 5355	3.231173 3.728816
			0 1700 1708	180 197 190 04 10	D_{1} of the Boundary Skook............	$5355 \cdot 7$ 10663.3	$3 \cdot 728816$ $4 \cdot 027891$
			290433	2085856	Hi-yu.	9984-5	3.999327
D_{1} of the Boundary	$650641 \cdot 705$	1291.7	$\begin{array}{lll}3 & 3329.4\end{array}$	$1833303 \cdot 7$	Squaw.	$5977 \cdot 2$	3.776496
	$1410000 \cdot 000$	$0 \cdot 0$	$551250 \cdot 8$	2350713.9	Hi-yu.	$5908 \cdot 0$	3.771438
			$1794654 \cdot 7$	$3594652 \cdot 5$	Slide...... .	$8112 \cdot 2$	$3 \cdot 909138$
			$1800000 \cdot 0$	0 0 6000.0	Monument No. 99	$17718 \cdot 2$	$4 \cdot 248419$
			$\begin{array}{llll}196 & 35 & 13 \cdot 4\end{array}$	$163710 \cdot 4$	Back.	$5882 \cdot 6$	3.769568
			$\begin{array}{llll}285 & 1518.3\end{array}$	105 101550	Barney.	$5919 \cdot 0$	3.772246
			$00000 \cdot 0$	$1800000 \cdot 0$	C_{1} of the Boundary.	$5643 \cdot 9$	3.751578
Monument No. 102.................	$\begin{array}{llll}65 & 05 & 15 \cdot 45\end{array}$	$478 \cdot 5$	2050336	250550	Game.	$4534 \cdot 9$	$3 \cdot 656563$
	$1410000 \cdot 00$	$0 \cdot 0$	2585735	790412	Barney	$5818 \cdot 1$	$3 \cdot 764780$
			552802	2352424	Skook.	$3814 \cdot 7$	3.581466
			$\begin{array}{ll}81 & 48 \\ 07\end{array}$	2614230	Hi-yu.	$4902 \cdot 2$	$3 \cdot 690394$
			1800000	00000	D_{1} of the Boundary.	$2671 \cdot 5$	3-426761
C_{1} of the Boundary	$\begin{array}{lll}65 & 03 & 39.476\end{array}$	$1222 \cdot 7$	$1150616 \cdot 9$	$2950040 \cdot 0$	Hi-yu	$5358 \cdot 2$	$3 \cdot 729021$
	$1410000 \cdot 000$	$0 \cdot 0$	160 23 188 $07 \cdot 0$	$34015 \quad 28 \cdot 6$	Mush	$19555 \cdot 5$	$4 \cdot 291270$
			$\begin{array}{llll}188 & 28 & 00.9\end{array}$	$82957 \cdot 8$	Buck.	$11406 \cdot 0$	4.057133
			$\begin{array}{llll}317 & 02 & 58 \cdot 7 \\ 359 & 46 & 48 \cdot 7\end{array}$	$\begin{array}{llll}137 & 09 & 28 \cdot 3\end{array}$	Castle	8264.0	3.917188
			$3594648 \cdot 7$ 0	1794652.9 180	Hug_{6}..............	$16150 \cdot 3$	$4 \cdot 208178$
			$00000 \cdot 0$	$1800000 \cdot 0$	B_{1} of the Boundary.	$16105 \cdot 8$	$4 \cdot 206982$
Monument No. 103................	$650151 \cdot 42$	$1592 \cdot 6$	$17 \begin{array}{lll}17 & 3317\end{array}$	1973005	Chief.	$9204 \cdot 6$	$3 \cdot 964005$
	$1410000 \cdot 00$	$0 \cdot 0$	1425429	3225051	Skook	$5210 \cdot 6$	3.716887
			2953813	1154443	Castle	$6245 \cdot 6$	3.795576
			3594322	1794326	Hug.	$12803 \cdot 7$	4.107337
			1800000	00000	C_{1} of the Boundary.	$3346 \cdot 5$	3-524587
Monument No. 104................	$\begin{array}{llll}64 & 59 & 29 \cdot 14\end{array}$	$902 \cdot 4$	1343004	3142533	Red.	$5498 \cdot 3$	$3 \cdot 740227$
	$1410000 \cdot 00$	$0 \cdot 0$	1595118	3394640	Skook	$9120 \cdot 8$	3.960030
			$\begin{array}{rr}183 & 2437 \\ 0\end{array}$	32447 180	Pinnacle.......	2328.4	3-367049
				1800000	B_{1} of the Boundary	$8352 \cdot 6$	3.921824
Monument No. 105 $5 \cdot 0$ feet north of B_{1} of the Boundary	645459.490	$1842 \cdot 7$					
			$3404634 \cdot 1$	$\begin{array}{llll}160 & 49 & 13 \cdot 1\end{array}$	Blow.	$7025 \cdot 0$	$3 \cdot 846649$
	$1410000 \cdot 000$	$0 \cdot 0$	0 0	$1800000 \cdot 0$	A_{1} of the Boundary	17535-9	$4 \cdot 243928$
			$545150 \cdot 7$	$2344139 \cdot 4$	Bush........	$10874 \cdot 9$	$4 \cdot 036427$
			$875637 \cdot 2$	$\begin{array}{llll}267 & 46 & 06 \cdot 5\end{array}$	Strata	$9160 \cdot 6$	3.961922
			$\begin{array}{lllll}125 & 07 & 36 \cdot 0\end{array}$	304 3	Crow	$10644 \cdot 5$	4.027125
			$\begin{array}{llll}145 & 07 & 29.8\end{array}$		Chief.	$4855 \cdot 4$	3.686226
			$2091437 \cdot 1$	$292106 \cdot 5$	Castle	$11526 \cdot 0$	4.061680
Monument No. 106..............	64 52 02	73.4			Birch......	9475.9 12070.5	3.976620
	$1410000 \cdot 00$	$0 \cdot 0$	$\begin{array}{rrrr}53 & 38 & 36 \\ 143 & 07 & 56\end{array}$	$\begin{array}{llll}233 & 27 & 30 \\ 322 & 57 & 55\end{array}$	Eagle Peak	$12070 \cdot 5$ 14510.6	$4 \cdot 081726$ 4.161686
			$\begin{array}{ll}163 & 39 \\ 163 & 24\end{array}$	343 3612	Chief	14510.6 9866.2	$4 \cdot 161686$ 3.994150
			1800000	0 0 0000	B_{1} of the Boundary	$5484 \cdot 1$	3.739109
			1803908	03912	Hug	$5440 \cdot 2$	3.735615
Monument No. 107................	645014.68 141	$454 \cdot 6$ 0.0			Lone................ .		
	$1410000 \cdot 00$	$0 \cdot 0$	00000 302248	$\begin{array}{llll}180 & 00 & 00 \\ 210 & 19 & 04\end{array}$	A_{1} of the Boundary Birch..............	8716.4 $6447 \cdot 1$	3.940337 3.809366
			683247	2482141	Eagle Peak	$10444 \cdot 6$	$4 \cdot 018893$
Monument No. 108................	$6447 \quad 57 \cdot 14$	1769.6			A_{1} of the Boundary		
	$1410000 \cdot 00$	$0 \cdot 0$	$\begin{array}{llll}127 & 29 & 02 \\ 199 & 44 & 28\end{array}$	3071851 19	Bush.	11207.5 6848.0	$4 \cdot 049508$ $3 \cdot 835566$
			3425931	1630122	Hog.	$5560 \cdot 8$	$3 \cdot 745135$
Monument No. 109. 3.7 feet north of A_{1} of the Boundary	$64 \quad 45 \quad 33 \cdot 26$	$1030 \cdot 3$					
	$644533 \cdot 230$	$1029 \cdot 1$	$00000 \cdot 0$	$1800000 \cdot 0$	C_{1} of the Boundary	10847 . 7	$4 \cdot 035336$
	$\begin{array}{rrrr}141 & 00 & 00 \cdot 000\end{array}$	$10 \cdot 0$	$210151 \cdot 7$	$2005631 \cdot 1$	Plateau.	$13116 \cdot 8$	$4 \cdot 117828$
			$291953 \cdot 8$	$2091601 \cdot 0$	Yukon	6961.6	3.842706
			$675451 \cdot 7$	$2474452 \cdot 4$	Nut.	$9466 \cdot 6$	3.976192
			$1164401 \cdot 2$	$2963255 \cdot 0$ 10	Eagle Peak	10884.4	4.036806
			$1991740 \cdot 6$	$1920 \quad 13.4$	Lone....................	$6748 \cdot 8$	3.829228
Monument No. 110.	64 42 35	$1099 \cdot 1$	$\begin{array}{llll}136 & 56 & 05\end{array}$		Eagle Peak.	14236.4	4.153400
	$1410000 \cdot 00$	$0 \cdot 0$	$\begin{array}{lll}159 & 21 & 59 \\ 180 & 00 & 00\end{array}$	$\begin{array}{rrrr}339 & 18 & 15 \\ 0 & 00 & 00\end{array}$	Birch. A_{1} of the Boundary	$9252 \cdot 6$ $5504 \cdot 5$	3.966262 $3 \cdot 740719$
Monument No. 111................	$644106 \cdot 64$	$205 \cdot 6$	00000	1800000	Crossing....	$506 \cdot 0$	$2 \cdot 704148$
	$1410000 \cdot 00$	$0 \cdot 0$	833647	$\begin{array}{ll}263 & 3518\end{array}$	Yukon River, West Base.	$1309 \cdot 1$	$3 \cdot 116959$
			3451631	1651641	Yukon River, East Base.	$564 \cdot 3$	$2 \cdot 751478$
Monument No. 112, $9 \cdot 5$ feet north of	$644051 \cdot 513$	$1595 \cdot 2$					
Bald of the Boundary.	$64 \quad 4051 \cdot 420$	$1592 \cdot 4$	$900000 \cdot 0$	$2700000 \cdot 0$	Boundary Astronomical		
	$1410000 \cdot 000$	0.0			Station..	$5 \cdot 37$	$0 \cdot 729974$

GEOGRAPHIC POSITIONS OF BOUNDARY MONUMENTS-Continued.

Stations.	Latitude. and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To stations.	Distance.	Logarithms.
Crossing, 1907..........	$\begin{array}{rrr} 6440 & 50 \cdot 300 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$\begin{array}{r} 1557.7 \\ 0.0 \end{array}$	$18000 \quad 00 \cdot 0$	$00000 \cdot 0$		Meters.$34 \cdot 7$	$1 \cdot 540329$
C of the Boundary		$1330 \cdot 5$0.0	$\begin{array}{llll}189 & 1501.0\end{array}$	$91652 \cdot 2$	Hog	$10118 \cdot 8$	4.005127
	$1410000 \cdot 000$		$\begin{array}{llll}202 & 51 & 01 \cdot 1 \\ 285 & 04 & 39 \cdot 3\end{array}$	$\begin{array}{rrr}22 & 52 & 50 \cdot 7 \\ 105 & 08 & 06 \cdot 3\end{array}$	Pete Loop	4138.4 3148.3	3.616831 3.498077
Monument No. $113{ }^{1}$.	$\begin{array}{r} 643928 \cdot 77 \\ 1410000 \cdot 00 \end{array}$	$\begin{array}{r} 891 \cdot 0 \\ 0.0 \end{array}$	$\begin{array}{r}0 \\ 0 \\ 277 \\ \hline\end{array}$	$\begin{array}{r}180 \\ 97 \\ \hline 70000\end{array}$	Monument No. 115. Loop.	$10811 \cdot 8$$3063 \cdot 5$	$\begin{aligned} & 4 \cdot 033896 \\ & 3 \cdot 486221 \end{aligned}$
Monument No. 114 (D of the Boundary).	$\begin{array}{rrr} 64 & 37 & 51 \cdot 607 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$\begin{array}{r} 1598 \cdot 0 \\ 0 \cdot 0 \end{array}$	$1853242 \cdot 7$	$53328 \cdot 7$	Knoll.	6988.6	$\begin{aligned} & 3 \cdot 844389 \\ & 3 \cdot 604176 \\ & 3 \cdot 892241 \end{aligned}$
			$\begin{array}{rrr}229 & 08 & 17 \cdot 7 \\ 0 & 00 & 00.0\end{array}$	$491144 \cdot 6$ 180		4019.5	
Monument No. 114A.............. .	$\begin{array}{r} 643621 \cdot 45 \\ 1410000 \cdot 00 \end{array}$	$\begin{array}{r} 667.2 \\ 0.0 \end{array}$	$\begin{array}{rrr} 0 & 00 & 00 \cdot 0 \\ 16 & 15 & 24 \cdot 5 \\ 180 & 00 & 00 \cdot 0 \\ 323 & 29 & 18 \cdot 3 \end{array}$	$\begin{array}{rrrr} 180 & 00 & 00 \cdot 0 \\ 196 & 13 & 26 \cdot 8 \\ 0 & 00 & 00 \cdot 0 \\ 143 & 34 & 07 \cdot 3 \end{array}$	```Monument No. }11 Path. Monument No. 114. Table.```	$\begin{aligned} & 5013 \cdot 5 \\ & 6204 \cdot 0 \\ & 2789 \cdot 1 \\ & 7165 \cdot 2 \end{aligned}$	$\begin{aligned} & 3 \cdot 700139 \\ & 3 \cdot 792673 \\ & 3 \cdot 445470 \\ & 3 \cdot 855227 \end{aligned}$
Monument No. 115 (E of the Boundary).	$\begin{array}{rrr} 6433 & 39 \cdot 660 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$\begin{array}{r} 1228 \cdot 1 \\ 0 \cdot 0 \end{array}$	$\begin{array}{rrr} 0 & 00 & 00 \cdot 0 \\ 12 & 20 & 44 \cdot 5 \\ 95 & 06 & 02 \cdot 2 \end{array}$	$\begin{array}{lll} 180 & 00 & 00 \cdot 0 \\ 192 & 18 & 25 \cdot 2 \\ 275 & 00 & 33 \cdot 1 \end{array}$	Monument No. 118 Liberty Slope.	$\begin{array}{r} 15444 \cdot 4 \\ 9539 \cdot 8 \\ 4870 \cdot 9 \end{array}$	$\begin{aligned} & 4 \cdot 188770 \\ & 3 \cdot 984066 \\ & 3 \cdot 687611 \end{aligned}$
Monument No. 115A.............. .	$\begin{array}{r} 643233 \cdot 75 \\ 14100 \\ 00 \cdot 00 \end{array}$	$\begin{array}{r} 1045 \cdot 2 \\ 0 \cdot 0 \end{array}$	$\begin{array}{r} 00000 \\ 153646 \\ 2493851 \end{array}$	1801956969 20000	Monument No. 116. Liberty Smoke.	$\begin{aligned} & 5616 \cdot 5 \\ & 7658 \cdot 2 \\ & 2982 \cdot 3 \end{aligned}$	$\begin{aligned} & 3 \cdot 749466 \\ & 3 \cdot 884125 \\ & 3 \cdot 474552 \end{aligned}$
Monument No. 116................	$\begin{array}{rrr} 64 & 29 & 32 \cdot 388 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$\begin{array}{r} 1003 \cdot 0 \\ 0 \cdot 0 \end{array}$	$\begin{array}{rrrr}15 & 31 & 22 \cdot 2 \\ 49 & 31 & 11 \cdot 4 \\ 180 & 00 & 00 \cdot 0\end{array}$	$\begin{array}{rrr}195 & 29 & 29 \cdot 2 \\ 229 & 28 & 52 \cdot 2 \\ 0 & 00 & 00 \cdot 0\end{array}$	Fortymile Dome. Liberty Monument No. 115	$\begin{aligned} & 6260 \cdot 9 \\ & 2709 \cdot 7 \\ & 7657 \cdot 7 \end{aligned}$	$\begin{aligned} & 3 \cdot 7966338 \\ & 3 \cdot 432919 \\ & 3 \cdot 884101 \end{aligned}$
Monument No. 117................	$\begin{array}{rrr} 64 & 28 & 16 \cdot 266 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$\begin{array}{r} 503 \cdot 7 \\ 0 \cdot 0 \end{array}$	$\begin{array}{llll}180 & 00 & 00 \cdot 0 \\ 204 & 41 & 52 \cdot 3 \\ 246 & 47 & 21 \cdot 7\end{array}$	$\begin{array}{rrr}0 & 00 & 00 \cdot 0 \\ 24 & 4641 \cdot 2 \\ 66 & 53 & 43 \cdot 5\end{array}$	Monument No. 115 Table Woody	$\begin{array}{r} 10015 \cdot 2 \\ 10203 \cdot 1 \\ 6145 \cdot 9 \end{array}$	$\begin{aligned} & 4 \cdot 000659 \\ & 4 \cdot 008731 \\ & 3 \cdot 788587 \end{aligned}$
Monument No. 118 (F of the Boundary).	$\begin{array}{rrr} 64 & 25 & 20 \cdot 954 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$\begin{array}{r} 648.9 \\ 0.0 \end{array}$	$\begin{array}{llll}136 & 18 & 38 \cdot 0 \\ 161 & 07 & 19 \cdot 6 \\ 259 & 22 & 16 \cdot 5\end{array}$	316341634150500.47925	Fortymile Dome Liberty Bare.	$\begin{aligned} & 2425 \cdot 7 \\ & 6370 \cdot 2 \\ & 3275 \cdot 8 \end{aligned}$	$\begin{aligned} & 3 \cdot 384842 \\ & 3 \cdot 804150 \\ & 3 \cdot 515315 \end{aligned}$
Monument No. 118A...............	$\begin{array}{rrr} 6422 & 21 \cdot 020 \\ 14100 & 00 \cdot 000 \end{array}$	$\begin{array}{r} 650.9 \\ 0.0 \end{array}$	$\begin{array}{lll} 167 & 07 & 03 \cdot 6 \\ 180 & 00 & 00 \cdot 0 \\ 207 & 31 & 52 \cdot 7 \\ 278 & 11 & 51 \cdot 2 \end{array}$	$\begin{array}{rrrr}347 & 05 & 10 \cdot 7 \\ 0 & 00 & 00 \cdot 0 \\ 27 & 35 & 29 \cdot 6 \\ 98 & 15 & 31 \cdot 6\end{array}$	Fortymile Dome Monument No. 118 Bare John Bull.	$\begin{aligned} & 7515 \cdot 5 \\ & 5572 \cdot 3 \\ & 6965 \cdot 3 \\ & 3311 \cdot 8 \end{aligned}$	$\begin{aligned} & 3 \cdot 875957 \\ & 3 \cdot 746033 \\ & 3 \cdot 842937 \\ & 3 \cdot 520068 \end{aligned}$
Monument No. 119................ .	$\begin{array}{rrr} 6421 & 14 \cdot 635 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$\begin{array}{r} 453.2 \\ 0.0 \end{array}$	$\begin{array}{lll}169 & 52 & 27 \cdot 1 \\ 180 & 00 & 00 \cdot 0 \\ 201 & 21 & 35 \cdot 7 \\ 244 & 12 & 53 \cdot 7\end{array}$	$\begin{array}{rrr}349 & 50 & 34 \cdot 2 \\ 0 & 00 & 00 \cdot 0 \\ 21 & 25 & 12 \cdot 6 \\ 64 & 16 & 34 \cdot 0\end{array}$	Fortymile Dome Monument No. 118 Bare John Bull	$\begin{aligned} & 9530 \cdot 6 \\ & 7628 \cdot 1 \\ & 8839 \cdot 5 \\ & 3640 \cdot 5 \end{aligned}$	$\begin{aligned} & 3 \cdot 979120 \\ & 3 \cdot 882417 \\ & 3 \cdot 946428 \\ & 3 \cdot 561157 \end{aligned}$
Monument No. 120................ .	$\begin{array}{rrr} 6420 & 22 \cdot 955 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$\begin{array}{r} 710.9 \\ 0 \cdot 0 \end{array}$	$\begin{array}{llll}171 & 19 & 31 \cdot 8 \\ 180 & 00 & 00.0 \\ 225 & 49 & 57.9\end{array}$	$\begin{array}{rrr}351 & 17 & 38 \cdot 9 \\ 0 & 00 & 00 \cdot 0 \\ 45 & 53 & 38 \cdot 2\end{array}$	Fortymile Dome Monument No. 119. John Bull	$\begin{array}{r} 11109 \cdot 7 \\ 1600.5 \\ 4569.9 \end{array}$	$\begin{aligned} & 4 \cdot 045702 \\ & 3 \cdot 204248 \\ & 3 \cdot 659902 \end{aligned}$
Monument No. 121 ${ }^{1}$	$\begin{array}{rrr} 64 & 18 & 53 \cdot 69 \\ 141 & 00 & 00 \cdot 00 \end{array}$	$\begin{array}{r} 1662 \cdot 8 \\ 0 \cdot 0 \end{array}$	6334501800000	$\begin{array}{rrrr}243 & 30 & 37 \\ 0 & 00 & 00\end{array}$	River Monument No. 118	$\begin{array}{r} 4210 \cdot 8 \\ 11992 \cdot 8 \end{array}$	$\begin{aligned} & 3 \cdot 624361 \\ & 4 \cdot 078919 \end{aligned}$
Monument No. 122	$\begin{array}{r} 641819 \cdot 576 \\ 1410000 \cdot 000 \end{array}$	$\begin{array}{r} 606 \cdot 2 \\ 0 \cdot 0 \end{array}$	77180180310 $000 \cdot 0$	$\begin{array}{rrr}357 & 42 & 24 \cdot 3 \\ 0 & 00 & 00 \cdot 0 \\ 130 & 19 & 43 \cdot 4\end{array}$	River. Monument No. 118 Moose.	$\begin{array}{r} 3858 \cdot 5 \\ 13049 \cdot 4 \\ 7028 \cdot 1 \end{array}$	$\begin{aligned} & 3 \cdot 586415 \\ & 4 \cdot 115590 \\ & 3 \cdot 846836 \end{aligned}$
Monument No. 123.	$\begin{array}{rrr} 64 & 16 & 29 \cdot 228 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$\begin{array}{r} 905 \cdot 1 \\ 0 \cdot 0 \end{array}$	$\begin{array}{lll}124 & 35 & 20 \cdot 2 \\ 180 & 00 & 00 \cdot 0 \\ 281 & 48 & 29 \cdot 8\end{array}$	$\begin{array}{rrrr}304 & 31 & 07 \cdot 5 \\ 0 & 00 & 00 \cdot 0 \\ 101 & 54 & 28 \cdot 8\end{array}$	River. Monument No. 118 Moose.	4580.616466.65481.7	$\begin{aligned} & 3 \cdot 660926 \\ & 4 \cdot 216605 \\ & 3 \cdot 738918 \end{aligned}$
Monument No. 123A.	$\begin{array}{rrr}64 & 14 & 26 \cdot 373 \\ 141 & 00 & 00 \cdot 000\end{array}$	$\begin{array}{r} 816 \cdot 7 \\ 0 \cdot 0 \end{array}$	$\begin{array}{llll}180 & 00 & 00 \cdot 0 \\ 192 & 58 & 30 \cdot 5 \\ 336 & 57 & 20 \cdot 3\end{array}$	0131302021565959	Monument No. 119 John Bull. Little Baldy	$12643 \cdot 1$14599.5$4642 \cdot 3$	$\begin{aligned} & 4 \cdot 101854 \\ & 4 \cdot 164337 \\ & 3 \cdot 666736 \end{aligned}$
Monument No. 124	$\begin{array}{r} 641223 \cdot 316 \\ 1410000 \cdot 000 \end{array}$	$\begin{array}{r} 722 \cdot 0 \\ 0 \cdot 0 \end{array}$	$\begin{array}{rrr}85 & 26 & 54 \cdot 3 \\ 159 & 44 & 20 \cdot 3 \\ 180 & 00 & 00 \cdot 0\end{array}$	265 339 10 40 0 $\mathbf{0 0} 07 \cdot 1$	Canyon. River. Monument No. 118	$\begin{array}{r} 4963.4 \\ 10889.5 \\ 24082.0 \end{array}$	$\begin{aligned} & 3 \cdot 695776 \\ & 4 \cdot 037008 \\ & 4 \cdot 381693 \end{aligned}$
R6 of the Boundary, 1907...	$\begin{array}{rrr} 64 & 09 & 58 \cdot 497 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$\begin{array}{r} 1811.5 \\ 0.0 \end{array}$	$\begin{array}{rrr} 0 & 00 & 00 \cdot 0 \\ 129 & 35 & 03 \cdot 9 \\ 205 & 45 & 17 \cdot 3 \\ 326 & 02 & 49 \cdot 8 \end{array}$	$\begin{array}{rrr}180 & 00 & 00 \cdot 0 \\ 309 & 29 & 33 \cdot 9 \\ 25 & 47 & 25 \cdot 2 \\ 146 & 09 & 09 \cdot 8\end{array}$	Monument No. 126. Canyon. Baldy. Gold.	$8925 \cdot 0$	3.950609
						$6419 \cdot 8$	$3 \cdot 807523$
						4412.7	3.644702
						$10244 \cdot 8$	4.010504
Monument No. 125........	$\begin{array}{rrr} 64 & 08 & 51 \cdot 042 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$\begin{array}{r} 1580 \cdot 6 \\ 0 \cdot 0 \end{array}$	$\begin{array}{rrr} 0 & 00 & 00 \cdot 0 \\ 197 & 32 & 55 \cdot 4 \\ 335 & 44 & 07 \cdot 7 \end{array}$	$\begin{array}{rrrr}180 & 00 & 00 \cdot 0 \\ 17 & 35 & 03 \cdot 3 \\ 155 & 46 & 31 \cdot 3\end{array}$	$\begin{aligned} & \text { Monument No. } 126 . \\ & \text { Baldy.............. } \end{aligned}$	$6836 \cdot 1$	3.834808
						$6359 \cdot 2$ $5262 \cdot 6$	3.803402 3.721202

[^48]GEOGRAPHIC POSITIONS OF BOUNDARY MONUMENTS-Continued.

Stations.	Latitude. and longitude.	$\begin{aligned} & \text { Seconds } \\ & \text { in } \\ & \text { meters. } \end{aligned}$	Azimuth.	Back azimuth.	To stations.	Distance.	Logarithms.
	-		- , "	- , "		Meters.	
Monument No. 125A ${ }^{1}$.	$\begin{array}{rrr} 6406 & 54 \cdot 75 \\ 14100 & 00 \cdot 00 \end{array}$	1695.5 0.0	$\begin{array}{rrrr}0 & 00 & 00 \cdot 0 \\ 28 & 33 & 09 \cdot 7\end{array}$	$\begin{array}{lll} 180 & 00 & 00 \cdot 0 \\ 208 & 30 & 34 \cdot 2 \end{array}$	Monument No. 126.......	$3234 \cdot 7$ $4902 \cdot 0$	$\begin{aligned} & 3 \cdot 509837 \\ & 3 \cdot 690377 \end{aligned}$
Monument No. 126 (G of the Boundary).	$\begin{array}{rrr} 6405 & 10 \cdot 290 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$\begin{array}{r} 318.7 \\ 0.0 \end{array}$	$\begin{array}{lll}108 & 49 & 07 \cdot 2 \\ 159 & 11 & 12 \cdot 5 \\ 180 & 00 & 00 \cdot 0 \\ 188 & 27 & 17 \cdot 0\end{array}$	$\begin{array}{rrrr}288 & 40 & 54 \cdot 7 \\ 339 & 05 & 42 \cdot 6 \\ 0 & 00 & 00 \cdot 0 \\ 8 & 29 & 24 \cdot 9\end{array}$	Baby Canyon Monument No. 118 Baldy	$\begin{array}{r} 7832 \cdot 2 \\ 13924 \cdot 5 \\ 37491 \cdot 3 \\ 13041 \cdot 1 \end{array}$	$\begin{aligned} & 3 \cdot 893883 \\ & 4 \cdot 143779 \\ & 4 \cdot 573930 \\ & 4 \cdot 115313 \end{aligned}$
Monument No. 126A.	$\begin{array}{rrr} 64 & 04 & 18 \cdot 563 \\ 141 & 00 & 00 \cdot 000 \end{array}$	574.9 0.0	$\begin{array}{rrrr}0 & 00 & 00 \cdot 0 \\ 9 & 03 & 51 \cdot 5 \\ 180 & 00 & 00 \cdot 0 \\ 345 & 21 & 27 \cdot 9\end{array}$	$\begin{array}{rrr} 180 & 00 & 00 \cdot 0 \\ 189 & 02 & 38 \cdot 8 \\ 0 & 00 & 00 \cdot 0 \\ 165 & 23 & 07 \cdot 3 \end{array}$	Monument No. 127...... Ptarmigan. Monument No. 126...... . Miller.	$5863 \cdot 4$ $6968 \cdot 8$ $1601 \cdot 9$ $5948 \cdot 1$	$\begin{aligned} & 3 \cdot 768152 \\ & 3 \cdot 843161 \\ & 3 \cdot 204635 \\ & 3 \cdot 774381 \end{aligned}$
Monument No. 127 (H of the Boundary).	$\begin{array}{rrr} 64 & 01 & 09 \cdot 217 \\ 141 & 00 & 00 \cdot 000 \end{array}$	285.4 0.0	$\begin{array}{rrrr}0 & 00 & 00 \cdot 0 \\ 47 & 09 & 05 \cdot 7 \\ 143 & 25 & 33 \cdot 7 \\ 215 & 56 & 30 \cdot 9 \\ 346 & 56 & 43 \cdot 5\end{array}$	$\begin{array}{rrr} 180 & 00 & 00 \cdot 0 \\ 227 & 07 & 53 \cdot 0 \\ 323 & 17 & 21 \cdot 3 \\ 36 & 02 & 50 \cdot 6 \\ 166 & 58 & 10 \cdot 7 \end{array}$	Monument No. 133. Ptarmigan. Baby. Gold. Bedrock	$22208 \cdot 3$ $1497 \cdot 5$ $12441 \cdot 7$ $9748 \cdot 2$ $5847 \cdot 7$	$\begin{aligned} & 4 \cdot 346515 \\ & 3 \cdot 175364 \\ & 4 \cdot 094879 \\ & 3 \cdot 988923 \\ & 3 \cdot 766982 \end{aligned}$
Monument No. 128.	635818.438 141000000	570.9 0.0	$\begin{array}{rrr}0 & 00 & 00 \cdot 0 \\ 24 & 10 & 44 \cdot 9 \\ 180 & 00 & 00 \cdot 0 \\ 353 & 27 & 14 \cdot 3\end{array}$	$\begin{array}{rrr} 180 & 00 & 00 \cdot 0 \\ 204 & 02 & 10 \cdot 0 \\ 0 & 00 & 00 \cdot 0 \\ 173 & 28 & 57 \cdot 8 \end{array}$	Monument No. 129...... Divide. Monument No. 127. Crag.	$\begin{array}{r} 4501 \cdot 6 \\ 19154 \cdot 8 \\ 5288 \cdot 5 \\ 13818 \cdot 9 \end{array}$	$\begin{aligned} & 3 \cdot 653365 \\ & 4 \cdot 282278 \\ & 3 \cdot 723336 \\ & 4 \cdot 140474 \end{aligned}$
Monument No. 129 (Asa of the Boundary).	$\begin{array}{rrr} 63 & 55 & 53 \cdot 067 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$1643 \cdot 2$ $0 \cdot 0$	$\begin{array}{rrr} 350 & 18 & 40 \cdot 6 \\ 0 & 00 & 00 \cdot 0 \\ 197 & 52 & 59 \cdot 1 \end{array}$	$\begin{array}{rll} 170 & 20 & 24 \cdot 1 \\ 180 & 00 & 00 \cdot 0 \\ 17 & 54 & 26 \cdot 2 \end{array}$	Crag. Monument No. 133 Bedrock.	$\begin{array}{r} 9360 \cdot 8 \\ 12418 \cdot 2 \\ 4301 \cdot 4 \end{array}$	$\begin{aligned} & 3 \cdot 971311 \\ & 4 \cdot 094057 \\ & 3 \cdot 633612 \end{aligned}$
Monument No. 130.	$\begin{array}{r} 6354 \quad 29 \cdot 35 \\ 1410000 \cdot 00 \end{array}$	908.8 0.0	$\begin{array}{rrrr}0 & 00 & 00 \\ 74 & 17 & 12 \\ 179 & 39 & 16 \\ 313 & 41 & 50 \\ 346 & 38 & 35\end{array}$	$\begin{array}{llll}180 & 00 & 00 \\ 254 & 05 & 54 \\ 359 & 39 & 16 \\ 133 & 42 & 23 \\ 166 & 40 & 19\end{array}$	Monument No. 133...... Lode. Reilly Sixty Crag.	$\begin{array}{r} 9825 \cdot 7 \\ 10719 \cdot 2 \\ 500 \cdot 0 \\ 694 \cdot 5 \\ 6819 \cdot 3 \end{array}$	$\begin{aligned} & 3 \cdot 992365 \\ & 4 \cdot 030164 \\ & 2 \cdot 698979 \\ & 2 \cdot 84170 \\ & 3 \cdot 833738 \end{aligned}$
Monument No. 131.	$\begin{array}{rrr} 63 & 54 & 24 \cdot 77 \\ 141 & 00 & 00 \cdot 00 \end{array}$	767.0 0.0	$\begin{array}{llll}103 & 17 & 38 \\ 179 & 43 & 51 \\ 180 & 00 & 00 \\ 303 & 56 & 06\end{array}$	$\begin{array}{rrrr}283 & 14 & 57 \\ 359 & 43 & 51 \\ 0 & 00 & 00 \\ 123 & 56 & 39\end{array}$	Sixtymile River, East Base Reilly. Monument No. 130. Sixty..	$\begin{array}{r} 2500 \cdot 4 \\ 641 \cdot 9 \\ 141 \cdot 9 \\ 605 \cdot 2 \end{array}$	$\begin{aligned} & 3 \cdot 39801 \\ & 2 \cdot 80750 \\ & 2 \cdot 15211 \\ & 2 \cdot 78193 \end{aligned}$
Monument No. 132.	$\begin{array}{rrr} 63 & 52 & 44 \cdot 436 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$1376 \cdot 0$ 0.0	$\begin{array}{rrrr}187 & 34 & 23 \cdot 5 \\ 335 & 02 & 58 \cdot 0 \\ 0 & 00 & 00 \cdot 0 \\ 91 & 55 & 08 \cdot 8 \\ 146 & 32 & 18 \cdot 0\end{array}$	7 35 $50 \cdot 7$ 155 04 $41 \cdot 5$ 180 00 $00 \cdot 0$ 271 43 $50 \cdot 1$ 326 29 $37 \cdot 8$	Bedrock. Crag. I_{1} of the Boundary Lode. Sixtymile River ,East Base	$\begin{array}{r} 10022 \cdot 2 \\ 3734 \cdot 6 \\ 6576 \cdot 9 \\ 10324 \cdot 4 \\ 4413 \cdot 3 \end{array}$	$\begin{aligned} & 4 \cdot 000965 \\ & 3 \cdot 572239 \\ & 3 \cdot 818023 \\ & 4 \cdot 013865 \\ & 3 \cdot 644760 \end{aligned}$
I_{1} of the Boundary	$\begin{array}{rrr} 63 & 49 & 12 \cdot 044 \\ 141 & 00 & 00 \cdot 000 \end{array}$	372.9 0.0	85 57 $22 \cdot 4$ 180 00 $00 \cdot 0$ 184 34 $25 \cdot 1$ 206 16 $32 \cdot 9$	$\begin{array}{rrr} 265 & 48 & 47 \cdot 9 \\ 0 & 00 & 00 \cdot 0 \\ 4 & 35 & 52 \cdot 2 \\ 26 & 18 & 16 \cdot 4 \end{array}$	Divide. Monument No. 126 Bedrock Crag.	$\begin{array}{r} 7865 \cdot 2 \\ 29673 \cdot 7 \\ 16564 \cdot 5 \\ 3558 \cdot 6 \end{array}$	$\begin{aligned} & 3 \cdot 895711 \\ & 4 \cdot 472371 \\ & 4 \cdot 219179 \\ & 3 \cdot 551280 \end{aligned}$
Monument No. 133 (I of the Boundary).	$\begin{array}{rrr} 63 & 49 & 09 \cdot 376 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$\begin{array}{r} 290 \cdot 3 \\ 0 \cdot 0 \end{array}$	$\begin{array}{rrr}50 & 23 & 29 \cdot 7 \\ 86 & 33 & 25 \cdot 0 \\ 180 & 00 & 00 \cdot 0\end{array}$	$\begin{array}{rrr}230 & 15 & 18 \cdot 0 \\ 266 & 24 & 50 \cdot 4 \\ 0 & 00 & 00 \cdot 0\end{array}$	Fred Divide. I_{1} of the Boundary..	$\begin{array}{r} 9750 \cdot 2 \\ 7859 \cdot 8 \\ 82 \cdot 6 \end{array}$	$\begin{aligned} & 3.989015 \\ & 3.895413 \\ & 1.917039 \end{aligned}$
Monument No. 134.	$\begin{array}{lll}63 & 46 & 38 \cdot 15\end{array}$ $14100 \quad 00 \cdot 00$	$\begin{array}{r} 1181 \cdot 4 \\ 0 \cdot 0 \end{array}$	$1800000 \cdot 0$	$00000 \cdot 0$	Ecc No. 21 A	$31 \cdot 3$	1:495544
Monument No. 135.	$\begin{array}{rrr} 63 & 45 & 02 \cdot 895 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$\begin{array}{r} 89.6 \\ 0.0 \end{array}$	$\begin{array}{lll} 132 & 23 & 08 \cdot 6 \\ 180 & 00 & 00 \cdot 0 \\ 236 & 27 & 38 \cdot 2 \\ 314 & 56 & 34 \cdot 8 \end{array}$	$\begin{array}{rrr} 312 & 14 & 34 \cdot 2 \\ 0 & 00 & 00 \cdot 0 \\ 56 & 31 & 58 \cdot 1 \\ 135 & 05 & 15 \cdot 3 \end{array}$	Divide I_{1} of the Boundary Odell. Ladue.	$\begin{array}{r} 10622.0 \\ 7632.5 \\ 4760.6 \\ 11269.8 \end{array}$	$\begin{aligned} & 4 \cdot 026205 \\ & 3 \cdot 882667 \\ & 3 \cdot 677666 \\ & 4 \cdot 051918 \end{aligned}$
Monument No. 136 $161 \cdot 48$ feet south of J of the Boundary	$\begin{array}{lll}63 & 41 & 48 \cdot 790 \\ 63 & 41 & 50 \cdot 380\end{array}$	$1510 \cdot 8$ $1560 \cdot 0$		$180 \quad 0000 \cdot 0$	Monument No. 142		
J of the Boundary..	63 141 141 00	$\begin{array}{r} 1560 \cdot 0 \\ 0 \cdot 0 \end{array}$	$\begin{array}{rrr} \begin{array}{rrr} 0 & 00 & 00 \cdot 0 \\ 148 & 53 & 18 \cdot 7 \\ 180 & 00 & 00 \cdot 0 \\ 284 & 04 & 24 \cdot 3 \end{array} \end{array}$	$\begin{array}{rrr} 180 & 00 & 00 \cdot 0 \\ 328 & 51 & 52 \cdot 0 \\ 0 & 00 & 00 \cdot 0 \\ 104 & 13 & 04 \cdot 4 \end{array}$	Monument No. 142 Interior. Monument No. 133 Ladue.		$\begin{aligned} & 4 \cdot 406656 \\ & 3 \cdot 409618 \\ & 4 \cdot 133342 \\ & 3 \cdot 915069 \end{aligned}$
Monument No. 137.	$\begin{array}{rrr} 63 & 39 & 22 \cdot 169 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$\begin{array}{r} 686 \cdot 5 \\ 0 \cdot 0 \end{array}$	$\begin{array}{rrr} 0 & 00 & 00 \cdot 0 \\ 52 & 03 & 31 \cdot 0 \\ 103 & 10 & 37 \cdot 6 \\ 345 & 49 & 20 \cdot 2 \end{array}$	180 00 $00 \cdot 0$ 231 55 $02 \cdot 0$ 283 01 $30 \cdot 4$ 165 50 $56 \cdot 2$	Monument No. 140 Timber. Round. Junction.	$\begin{array}{r} 11166 \cdot 3 \\ 9932 \cdot 1 \\ 8623 \cdot 0 \\ 6027 \cdot 3 \end{array}$	$\begin{aligned} & 4 \cdot 047910 \\ & 3 \cdot 997040 \\ & 3 \cdot 935657 \\ & 3 \cdot 780122 \end{aligned}$
Monument No. 138.	$\begin{array}{rrr} 63 & 36 & 52 \cdot 453 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$\begin{array}{r} 1624 \cdot 2 \\ 0 \cdot 0 \end{array}$	$\begin{array}{rrr}128 & 10 & 39 \cdot 7 \\ 227 & 49 & 43 \cdot 4 \\ 309 & 17 & 07 \cdot 0 \\ 0 & 00 & 00 \cdot 0\end{array}$	308 01 $32 \cdot 6$ 47 58 $23 \cdot 3$ 129 18 $43 \cdot 0$ 180 00 $00 \cdot 0$	Round Ladue. Junction. Monument No. 140.	$\begin{array}{r} 10680 \cdot 5 \\ 10763 \cdot 0 \\ 1907 \cdot 4 \\ 6530 \cdot 4 \end{array}$	$\begin{aligned} & 4 \cdot 028593 \\ & 4 \cdot 031931 \\ & 3 \cdot 280433 \\ & 3 \cdot 814938 \end{aligned}$
Monument No. $139{ }^{1}$.	$\begin{array}{rrr} 63 & 34 & 33 \cdot 28 \\ 141 & 00 & 00 \cdot 00 \end{array}$	$\begin{array}{r} 1030 \cdot 6 \\ 0 \cdot 0 \end{array}$	2703757.9 $00000 \cdot 0$	$\begin{array}{rrr} 90 & 48 & 50 \cdot 8 \\ 180 & 00 & 00 \cdot 0 \end{array}$	Edward Monument No. 142	$\begin{aligned} & 10061 \cdot 6 \\ & 11972 \cdot 2 \end{aligned}$	$\begin{aligned} & 4 \cdot 002668 \\ & 4 \cdot 078175 \end{aligned}$

[^49]GEOGRAPHIC POSITIONS OF BOUNDARY MONUMENTS-Continued.

Stations.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To stations.	Distance.	Logarithms.
Monument No. 140...............	- , "		-	- , "		Meters.	
	63 33 141 21.558	667.5	$\begin{array}{lll}147 & 24 & 26 \cdot 2\end{array}$	$\begin{array}{llll}327 & 15 & 19 \cdot 2 \\ 53 & 58 & 16.4\end{array}$	Round	15586.6	4. 192751
	$1410000 \cdot 000$	$0 \cdot 0$	$\begin{array}{llll}233 & 51 & 14 \cdot 0\end{array}$	$\begin{array}{rlll}53 & 58 & 16 \cdot 4\end{array}$	Ridge	$8052 \cdot 5$	$3 \cdot 905930$
			$3080156 \cdot 7$	$1281349 \cdot 2$	Point........	13992.5	$4 \cdot 145896$
			$00000 \cdot 0$	$1800000 \cdot 0$	Monument No. 141	$4226 \cdot 8$	
Monument No. 141................	$\begin{array}{lll}63 & 31 & 05 \cdot 055\end{array}$	156.0	$564951 \cdot 7$	$2364235 \cdot 6$	Summit.	$6400 \cdot 6$	$3 \cdot 806222$
	$1410000 \cdot 000$		$1884717 \cdot 5$	84853.4	Junction.	$9662 \cdot 8$	$3 \cdot 985103$
			$1 \begin{aligned} & 0 \\ & 0\end{aligned}$	$1800000 \cdot 0$	Monument No. 142	$5524 \cdot 4$	$3 \cdot 742284$
			2155509.4	360211.7	Ridge. . . .	11084.3	$4 \cdot 044706$
Monument No. 142 (K of theBoundary).	$63 \quad 2806 \cdot 645$	205.80.0	$00000 \cdot 0$	$1800000 \cdot 0$	L of the Boundary	$32168 \cdot 4$	$4 \cdot 507429$
	$1410000 \cdot 000$		$142744 \cdot 2$	$1942251 \cdot 1$	Oh-ti.	$18282 \cdot 8$	$4 \cdot 262042$
			$\begin{array}{llll}264 & 08 & 40 \cdot 7\end{array}$	$84 \quad 2032.9$	Point	11079.2	$4 \cdot 044508$
			$\begin{array}{llllllllllll}327 & 17 & 30 \cdot 8\end{array}$	$1472925 \cdot 5$	Fra-wa-pe	$20596 \cdot 6$	$4 \cdot 313796$
Monument No. 143............... .	$63 \quad 2516.946$	$524 \cdot 7$	200831.5	$20003 \quad 38 \cdot 2$	Oh-ti.	$13229 \cdot 3$	$4 \cdot 121537$
	$1410000 \cdot 000$	52.70.0	$\begin{array}{llll}180 & 00 & 00 \cdot 0\end{array}$	$00000 \cdot 0$	Monument No. 142.	$5254 \cdot 6$	$3 \cdot 720539$
			$2245444 \cdot 2$	$450722 \cdot 2$	Victoria	$16584 \cdot 4$	$4 \cdot 219700$
Monument No. $144{ }^{1}$.	$\begin{array}{llll}63 & 22 & 44 \cdot 75\end{array}$	$1385 \cdot 6$	$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 142.	9967 -3	$3 \cdot 998579$
	$1410000 \cdot 00$	$0 \cdot 0$	$2152549 \cdot 6$	$35 \quad 38 \quad 27 \cdot 4$	Victoria.	20197-8	$4 \cdot 305304$
Monument No. $145{ }^{1}$.	$63 \quad 20 \quad 38 \cdot 25$	1181.4	$00000 \cdot 0$	$1800000 \cdot 0$	L of the Boundary	$18281 \cdot 2$	$4 \cdot 262005$
	$1410000 \cdot 00$	$0 \cdot 0$	$50 \quad 0639 \cdot 6$	$2300146 \cdot 6$	Oh-ti	$5950 \cdot 8$	$3 \cdot 774578$
Monument No. $146{ }^{1}$.	$6317 \quad 41 \cdot 44$	$1283 \cdot 2$	$2594920 \cdot 2$	$795214 \cdot 3$	Fra-wa-pe	11312 -8	$4 \cdot 053572$
	$140000 \cdot 00$	$0 \cdot 0$	$00000 \cdot 0$	$1800000 \cdot 0$	L of the Boundary	$12809 \cdot 5$	$4 \cdot 107532$
Monument No. 147.	$\begin{array}{lll}63 & 16 & 04 \cdot 273\end{array}$	$132 \cdot 5$	$00000 \cdot 0$	$1800000 \cdot 0$	No. 147, Eccentric.	$132 \cdot 3$	$2 \cdot 121461$
	$1410000 \cdot 000$	$0 \cdot 0$					
No. 147, Eccentric	$631600 \cdot 007$	$0 \cdot 2$	$00000 \cdot 0$	$1800000 \cdot 0$	Monument No. 148.	4671.9	$3 \cdot 669495$
	$1410000 \cdot 000$	$0 \cdot 0$	$\begin{array}{llll}207 & 48 & 05 \cdot 3\end{array}$	$274854 \cdot 8$	Howard.	$1658 \cdot 1$	$3 \cdot 219603$
			$1493729 \cdot 2$	$3293641 \cdot 7$	Hyacinthe	$1466 \cdot 4$	$3 \cdot 166266$
Monument No. 148.	$631329 \cdot 122$	$901 \cdot 7$	$\begin{array}{llll}154 & 15 & 15 \cdot 1\end{array}$	$3341022 \cdot 3$	Oh-ti.	$10511 \cdot 6$	$4 \cdot 021667$
	$1410000 \cdot 000$	9010	$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 142.	$27171 \cdot 5$	$4 \cdot 434114$
			$\begin{array}{llll}228 & 31 & 00 \cdot 6\end{array}$	$484254 \cdot 4$	Fra-wa-pe	$14856 \cdot 2$	4.171909
			$3162537 \cdot 1$	$1362905 \cdot 6$	Brown.	$4739 \cdot 3$	$3 \cdot 675712$
Monument No. 149 $3 \cdot 1$ feet north of L of the Boundary.	$631047 \cdot 773$	1479 - 1					
	$631047 \cdot 743$	$\begin{array}{r} 1478 \cdot 3 \\ 0 \cdot 0 \end{array}$	${ }_{0} 00000 \cdot 0$	$1800000 \cdot 0$	Monument No. 150.	$2235 \cdot 3$	$3 \cdot 349328$
	$1410000 \cdot 000$		$38 \quad 5748 \cdot 4$	$2184638 \cdot 9$	Flat...........	16765.4	$4 \cdot 224415$
			$1231858 \cdot 1$	$3030856 \cdot 5$	Bump	$11260 \cdot 4$	4.051552
			$1622852 \cdot 2$	$3422359 \cdot 3$	Oh-ti.	$15168 \cdot 5$	4-180942
M of the Boundary................ .	$630940 \cdot 111$	$1242 \cdot 0$	$435606 \cdot 6$	$2234457 \cdot 1$	Flat.	$15194 \cdot 3$	$4 \cdot 181682$
	$1410000 \cdot 000$	$0 \cdot 0$	$1312031 \cdot 6$	$3111030 \cdot 1$	Bump.	$12533 \cdot 3$	$4 \cdot 098066$
			$1800000 \cdot 0$	$00000 \cdot 0$	L of the Boundary	$2094 \cdot 1$	3.320993
Monument No. 150 (M_{1} of the Boundary).	$\begin{array}{rrr}63 & 09 & 35 \cdot 552 \\ 141 & 00 & 00 \cdot 000\end{array}$	1100.9		$\begin{array}{llll}165 & 06 & 01.3\end{array}$	Moosehorn	$10647 \cdot 3$	4.027239 4.178776
		$0 \cdot 0$	$\begin{array}{r}4418 \\ 1314925 \cdot 3 \\ \hline 1\end{array}$	$\begin{array}{llll}224 & 07 & 15 \cdot 9 \\ 311 & 39 & 21 \cdot 4\end{array}$	Flat..	$15093 \cdot 0$ 12627.0	$4 \cdot 178776$ $4 \cdot 101301$
Monument No. 151...............	$\begin{array}{rrr} 63 & 07 & 34 \cdot 099 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$1055 \cdot 8$	$1800000 \cdot 0$	0 0 $0000 \cdot 0$	Monument No. 150.	$3760 \cdot 5$	3.575251
		$0 \cdot 0$	$3371041 \cdot 1$	$1571335 \cdot 5$	Moosehorn	$7080 \cdot 8$	$3 \cdot 850080$
			$5615 \quad 56 \cdot 2$	$2360446 \cdot 9$	Flat	$12677 \cdot 1$	4-103019
Monument No. $152{ }^{1}$.	630439.91	$1235 \cdot 8$	$810718 \cdot 1$	2605608.9	Flat	$10670 \cdot 4$	$4 \cdot 028179$
	$1410000 \cdot 00$	$0 \cdot 0$	$1800000 \cdot 0$	$00000 \cdot 0$	M of the Boundary	9295-0	3.968250
Monument No. 153 (N of the Boundary).	$\begin{array}{rrr} 63 & 01 & 18 \cdot 805 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$582 \cdot 3$	$30147 \cdot 5$	$1830027 \cdot 3$.	Scottie.	$24144 \cdot 3$	4.382814
		$0 \cdot 0$	$1800000 \cdot 0$	$100000 \cdot 0$	Monument No. 150.	$15380 \cdot 6$	4-186973
			3470659.9	$1670955 \cdot 4$	Wienerwurst	$12477 \cdot 5$	4.096126
Monument No. 154................	$\begin{array}{rrr} 62 & 58 & 12 \cdot 726 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$394 \cdot 0$	$00000 \cdot 0$	$1800000 \cdot 0$	O of the Boundary	$17093 \cdot 5$	4-232830
		$0 \cdot 0$	$35842 \cdot 9$	$1835722 \cdot 8$	Scottie.	$18393 \cdot 4$	$4 \cdot 264662$
			1941153.6	$\begin{array}{lllllll}14 & 14 & 47 \cdot 8\end{array}$	Moosehorn	$11197 \cdot 3$	$4 \cdot 049111$
Monument No. 155.	$\begin{array}{rrr} 62 & 55 & 28 \cdot 819 \\ 141 & 00 & 00 \cdot 000 \end{array}$	$892 \cdot 3$	$00000 \cdot 0$	$1800000 \cdot 0$	O of the Boundary	$12018 \cdot 6$	$4 \cdot 079853$
		$0 \cdot 0$	52929.9	$185 \quad 2809 \cdot 8$	Scottie.	$13335 \cdot 3$	4.125004
Monument No. 156.	$62 \quad 52 \quad 57 \cdot 228$	1771.9	$\begin{array}{llll}0 & 00 & 00 \cdot 0\end{array}$	$18000 \quad 00 \cdot 0$	O of the Boundary.	$7325 \cdot 0$	$3 \cdot 864809$
	$1410000 \cdot 000$	$0 \cdot 0$	$82734 \cdot 7$	$1882614 \cdot 6$	Scottie..........	$8675 \cdot 0$	$3 \cdot 938268$
Monument No. 157 25.26 feet south of Ecc. No. 46 ..	$625030 \cdot 223$	$935 \cdot 8$					
	$625030 \cdot 472$$1410000 \cdot 000$	$943 \cdot 5$	$00000 \cdot 0$	$1800000 \cdot 0$	O of the Boundary	2781.2	$3 \cdot 444237$
		$0 \cdot 0$	$\begin{array}{lllll}140 & 31 & 28.4\end{array}$	$32018 \quad 58 \cdot 2$	Sauerkraut....	$18676 \cdot 3$	$4 \cdot 271291$
			$1992235 \cdot 6$	$192530 \cdot 9$	Wienerwurst	$8385 \cdot 4$	$3 \cdot 923521$

No check on this position.

GEOGRAPHIC POSITIONS OF BOUNDARY MONUMENTS—Continued.

Stations.	Latitude and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To stations.	Distance.	Logarithms.
	- ,		- , "	- , "		Meters.	
Monument No. 158.. $10 \cdot 9$ feet south of 0 of the Boundary	$624900 \cdot 537$	$16 \cdot 7$					
	6249 00-644	19.9	$45 \quad 2800 \cdot 4$	$2252640 \cdot 4$	Scottie	$1790 \cdot 3$	$3 \cdot 252924$
	$1410000 \cdot 000$	$0 \cdot 0$	$\begin{array}{llll}145 & 22 & 40 \cdot 9 \\ 194 & 35 & 07 \cdot 3\end{array}$	325 14 14	Sauerkraut. Wienerwurs	$20898 \cdot 1$ 11047.6	$4 \cdot 320106$ 4.043269
Monument No. 159.	$6245 \quad 21 \cdot 304$	659.4	$\begin{array}{llll}167 & 01 & 02.8\end{array}$	$3465942 \cdot 7$	Scottie	$5680 \cdot 7$	3.754404
	$1410000 \cdot 000$	$0 \cdot 0$	180 100000	$00000 \cdot 0$	O of the Boundary	$6791 \cdot 1$	$3 \cdot 831940$
			$35119 \quad 31.8$	$1711958 \cdot 3$	Starvation.	$2800 \cdot 9$	$3 \cdot 447301$
			5310109.0	$2330010 \cdot 8$	Mirror.	$11961 \cdot 7$	$4 \cdot 077793$
Monument No. 160 (P of the Boundary).	$\begin{array}{lll}62 & 43 & 48 \cdot 394\end{array}$	$1498 \cdot 3$	$\begin{array}{llll}17 & 27 & 28 \cdot 8\end{array}$	1972158.2	Airs.	$17718 \cdot 3$	$4 \cdot 248423$
	$1410000 \cdot 000$	$0 \cdot 0$	$1525220 \cdot 3$	$3325014 \cdot 0$	Mick	$4419 \cdot 9$	$3 \cdot 645412$
			$1712224 \cdot 5$	$3512104 \cdot 4$	Scottie	8508.4	3.929847
			$\begin{array}{ll}180 & 00 \\ 3 & 00 \cdot 0\end{array}$	0 $0000 \cdot 0$	O of the Boundary	$9667 \cdot 7$	3.985323
			$34008 \quad 58.9$	$1601615 \cdot 0$	Dave..	$20656 \cdot 1$	$4 \cdot 315049$
Monument No. 161 (Q of the Boundary).	$\begin{array}{llll}62 & 40 & 32 \cdot 821\end{array}$	$1016 \cdot 1$	$260626 \cdot 3$	$2060055 \cdot 7$	Airs.	12079.5	4.082048
	$1410000 \cdot 000$	$0 \cdot 0$	$1800000 \cdot 0$	$\begin{array}{llll}0 & 00 & 00 \cdot 0\end{array}$	Monument No. 160	$6055 \cdot 2$	3.782126
			$1835516 \cdot 8$	$35543 \cdot 2$	Starvation.	$6177 \cdot 3$	$3 \cdot 790800$
Monument No. 162................	$\begin{array}{llll}62 & 38 & 17 \cdot 29\end{array}$	$535 \cdot 3$	1800000	00000	Monument No. 161	$4196 \cdot 1$	$3 \cdot 62285$
	$1410000 \cdot 00$	$0 \cdot 0$					
Monument No. 163.	623509.970	$308 \cdot 7$	$3902 \quad 20 \cdot 5$	$2190057 \cdot 7$	Flag No. 7.	$2115 \cdot 9$	$3 \cdot 325496$
	$1410000 \cdot 000$	$0 \cdot 0$	$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 160	$16050 \cdot 8$	$4 \cdot 205498$
			$1812951 \cdot 7$	$13018 \cdot 1$	Starvation	$16164 \cdot 1$	$4 \cdot 208551$
			$1883614 \cdot 7$	$83847 \cdot 0$	Rupe.	16281.6	$4 \cdot 211698$
Monument No. 164 $83 \cdot 5$ feet south of R of the Boundary..	$623400 \cdot 819$	$25 \cdot 4$					
		$50 \cdot 8$	$271822 \cdot 1$	$2071010 \cdot 8$	Wellesley	$17327 \cdot 9$	4-238746
	$\begin{array}{rrr}141 & 00 & 00 \cdot 000\end{array}$	$50 \cdot 8$ 0.0	$103 \quad 22 \quad 39 \cdot 5$	$28317 \begin{array}{ll}283 & 17\end{array}$	Airs.....	5463.9	$3 \cdot 737501$
			$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 161	12111.2	4.083187
Monument No. 165.	$6231 \quad 24 \cdot 952$	772.5	$00000 \cdot 0$	$\begin{array}{llll}180 & 00 & 00 \cdot 0\end{array}$	S of the Boundary	$5759 \cdot 1$	$3 \cdot 760354$
	$1410000 \cdot 000$	$0 \cdot 0$	$1390006 \cdot 3$	$3185436 \cdot 0$	Airs.......	$8102 \cdot 6$	3.908626
			$1800000 \cdot 0$	$00000 \cdot 0$	R of the Boundary	$4851 \cdot 1$	$3 \cdot 685843$
Monument No. 166. $20 \cdot 0$ feet south of S of the Boundary...	$62 \quad 2818 \cdot 739$	$580 \cdot 2$					
	$62 \quad 2818.936$	$586 \cdot 2$	$585639 \cdot 7$	$2384828 \cdot 7$	Wellesley	9279•1	3.967504
	$1410000 \cdot 000$	$0 \cdot 0$	$\begin{array}{llll}155 & 53 & 02 \cdot 8\end{array}$	$33547 \quad 32 \cdot 5$	Airs.....	13009.9	$4 \cdot 114273$
	1 00 00		180 00 1500 00	$00000 \cdot 0$	R of the Boundary	$10610 \cdot 2$	$4 \cdot 025724$
			$2165257 \cdot 5$	$37 \quad 00 \quad 13 \cdot 1$	Dave......	$11686 \cdot 6$	
Monument No. 167................ . .	$62 \quad 2713 \cdot 749$	$425 \cdot 7$	$704749 \cdot 4$	$2503938 \cdot 3$	Wellesley	$8417 \cdot 4$	3.925179
	$1410000 \cdot 000$	$0 \cdot 0$	$1800000 \cdot 0$	$00000 \cdot 0$	S of the Boundar	2018-2	$3 \cdot 304959$
Monument N 万. 168.	$\begin{array}{r}62 \\ \hline 14\end{array}$	$79 \cdot 8$	$00000 \cdot 0$	$\begin{array}{llll}180 & 00 & 00 \cdot 0\end{array}$	U of the Boundary	$36845 \cdot 5$	
	$1410000 \cdot 000$	$0 \cdot 0$	$1 \begin{array}{lll}18 & 45 & 44 \cdot 5\end{array}$	$198 \quad 3708.6$	Baultoff.	$26216 \cdot 2$	$4 \cdot 418570$
			1113701.6	$2912850 \cdot 8$	Wellesley	$8550 \cdot 5$	3.931990
Monument No. 169.	$\begin{array}{lll}62 & 18 & 25 \cdot 369\end{array}$	$785 \cdot 4$	$3161015 \cdot 6$	$\begin{array}{llll}136 & 19 & 03.8\end{array}$	Niggerhead.......	$12448 \cdot 1$	4.095103
	$1410000 \cdot 000$	$0 \cdot 0$. $00000 \cdot 0$	$1800000 \cdot 0$	U of the Boundary	$26405 \cdot 8$	$4 \cdot 421699$
			$302251 \cdot 8$	$2101416 \cdot 3$	Baultoff	$16672 \cdot 9$	$4 \cdot 222010$
Monument No. 170................	$62 \quad 13 \quad 24 \cdot 792$	$767 \cdot 6$	$2675018 \cdot 0$	$875905 \cdot 9$	Niggerhead.	$8626 \cdot 5$	3.935836
	$1410000 \cdot 000$	$0 \cdot 0$	0 0 $0000 \cdot 0$	$1800000 \cdot 0$	Monument No. 172	$10650 \cdot 2$	$4 \cdot 027356$
			$585639 \cdot 6$		Baultoff.	$9843 \cdot 1$	3.993134
			$1605111 \cdot 8$	3404301.5	Wellesley....	$24236 \cdot 0$	$4 \cdot 384461$
Monument No. 171................	$\begin{array}{rrrr}62 & 10 & 00 \cdot 136\end{array}$	$4 \cdot 2$	$2321820 \cdot 0$	$\begin{array}{rrr}52 & 27 & 07.8\end{array}$	Niggerhead	$10894 \cdot 2$	
	$1410000 \cdot 000$	$0 \cdot 0$	$\begin{array}{rrrr}0 & 00 & 00 \cdot 0 \\ 98 & 29 & 09.2\end{array}$	$\begin{array}{ccc}180 & 00 & 00 \cdot 0 \\ 278 & 20 & 34 \cdot 0\end{array}$	Monument No. 172.	4314.3 8525.6	3.634909 3.930727
			$982909 \cdot 2$ $1644712 \cdot 7$	1878 344 349	Baultoff.	$8525 \cdot 6$ 30292.8	3.930727 4.481340
Monument No. 172 (T of the Boundary).	$\begin{array}{rrr}62 & 07 & 40 \cdot 779\end{array}$	1262.5	$1800000 \cdot 0$	0 000000	S of the Boundary	$38332 \cdot 3$	$4 \cdot 583565$
	$1410000 \cdot 000$	$0 \cdot 0$	$\begin{array}{llll}218 & 08 & 48 \cdot 3 \\ 301 & 05 & 19.9\end{array}$	$381736 \cdot 2$ $1211207 \cdot 1$	Niggerhead. Ed.......	13956.1 7806.4	$4 \cdot 144765$ $3 \cdot 892452$
Monument No. $173{ }^{1}$.	$6206 \quad 24 \cdot 48$	757.9	603313	2402325	Joe.	$11089 \cdot 0$	$4 \cdot 044894$
	$1410000 \cdot 00$	$0 \cdot 0$	$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 172.	$2362 \cdot 2$	$3 \cdot 373321$
Monument No. 174. 3.33 feet south of U of the Boundary	$620412 \cdot 401$	383.9					
	$\begin{array}{rrr}62 & 04 & 12 \cdot 434 \\ 141 & 00 & 00 \cdot 000\end{array}$	385.0 0.0	$\begin{array}{r}815741 \cdot 9 \\ 18000 \\ \hline 00 \cdot 0\end{array}$	$\begin{array}{rrr}2614754 \cdot 7 \\ 0 & 00 & 00 \cdot 0\end{array}$	Joe............. 172	$9752 \cdot 3$ $6450 \cdot 0$	3.989108 3.809559
			$3192545 \cdot 5$	$1392703 \cdot 5$	Beaver.	$1967 \cdot 2$	$3 \cdot 293857$

[^50]GEOGRAPHIC POSITIONS OF BOUNDARY MONUMENTS—Continued.

Stations.	Latitude and longitude.	$\begin{aligned} & \text { Seconds } \\ & \text { in } \\ & \text { meters. } \end{aligned}$	Azimuth.	Back azimuth.	To stations.	Distance.	Logarithms.
Monument No. 175. $6 \cdot 3$ feet south of V of the Boundary.	- " "	-	- ' "	- , "		Meters.	
	620316.971	$525 \cdot 4$					
	$\begin{array}{llll}62 & 03 & 17 \cdot 033\end{array}$	$527 \cdot 3$	$920502 \cdot 4$	$2715515 \cdot 4$	Joe..........	9662.9	3.985107
	$1410000 \cdot 000$	$0 \cdot 0$	$\begin{array}{ll}180 & 00 \\ 00 & 00\end{array}$	$00000 \cdot 0$	U of the Boundary	$1715 \cdot 1$	$3 \cdot 234292$
			$2601233 \cdot 4$	$8013 \quad 51 \cdot 4$	Beaver.	1298.4	$3 \cdot 113400$
			$3132950 \cdot 7$	1333803.4	Hump	11199.5	4.049199
Monument No. 176.	$620141 \cdot 545$	$1286 \cdot 0$	$3541055 \cdot 0$	1741255.9	Rabbit	$19768 \cdot 3$	4-295969
	$1410000 \cdot 000$	$0 \cdot 0$	$00000 \cdot 0$	$1800000 \cdot 0$	W of the Boundary	$20764 \cdot 1$	$4 \cdot 317314$
			$2015610 \cdot 7$	$215728 \cdot 7$	Beaver.	$3424 \cdot 9$	3.534645
Monument No. 176A.	$6158 \quad 32 \cdot 361$	$1001 \cdot 8$	$00000 \cdot 0$	$1800000 \cdot 0$	Monument No. 178.	3857.9	$3 \cdot 586351$
	$1410000 \cdot 000$	$0 \cdot 0$	$\begin{array}{lllll}188 & 03 & 41 \cdot 0\end{array}$	80458.8	Beaver.	9123.8	3.960175
			$2071834 \cdot 7$	$272521 \cdot 6$		$14571 \cdot 0$	
Monument No. 177.	$6157 \quad 54 \cdot 199$	1677.8	$00000 \cdot 0$	$1800000 \cdot 0$	Monument No. 178.	$2676 \cdot 5$	3.427570
	$1410000 \cdot 000$	$0 \cdot 0$	745351.3 1870821.4	254 7 7	Wi-ki......	$11445 \cdot 7$	4.058644
Monument No. 178.	615627.741	$858 \cdot 7$	1432629.0	$3231642 \cdot 1$	Joe	16211.9	$4 \cdot 209833$
	$14100 \quad 00 \cdot 000$	$0 \cdot 0$	$1800000 \cdot 0$	0 $0000 \cdot 0$	V of the Boundar	$12670 \cdot 8$	$4 \cdot 102803$
			$\begin{array}{llll}185 & 40 & 04 \cdot 6\end{array}$	$54122 \cdot 5$	Beaver	12954.9	$4 \cdot 112434$
			$3483654 \cdot 5$	$168 \quad 38 \quad 55 \cdot 5$	Rabbit	$10151 \cdot 6$	4.006534
			882456.9	$2681348 \cdot 5$	Wi-ki.	$11054 \cdot 6$	4.043544
Monument No. 179	$615323 \cdot 209$	$718 \cdot 4$	$00000 \cdot 0$	$1800000 \cdot 0$	W of the Boundary	$5336 \cdot 8$	3.727284
	$1410000 \cdot 000$	$0 \cdot 0$	$\begin{array}{llll}116 & 04 & 22 \cdot 3\end{array}$	$\begin{array}{llll}295 & 53 & 13.9\end{array}$	Wi-ki	$12302 \cdot 4$	4.089989
			$1524354 \cdot 8$	$3323408 \cdot 2$	Joe.	$21077 \cdot 1$	4. 323810
Monument No. 180.. $11 \cdot 83$ feet south of W of the Boundary	$615030 \cdot 700$	$950 \cdot 4$					
	$615030 \cdot 816$	$954 \cdot 1$	$295532 \cdot 8$	$2095200 \cdot 0$	Cache	$7093 \cdot 8$	$3 \cdot 850881$
	$1410000 \cdot 000$	$0 \cdot 0$	$775234 \cdot 2$	$2575054 \cdot 8$	Slide.	$1689 \cdot 4$	$3 \cdot 227743$
			1074818.5	28743 32.0	Sheep	$4992 \cdot 3$	$3 \cdot 698303$
			$\begin{array}{ll}134 & 11 \\ 189.0\end{array}$	$3140030 \cdot 9$	Wi-ki	$15412 \cdot 4$	$4 \cdot 187871$
			$\begin{array}{llll}180 & 00 & 00 \cdot 0\end{array}$	$00000 \cdot 0$	V of the Boundary	$23720 \cdot 3$	$4 \cdot 375120$
			2065411.9	$2702 \quad 24 \cdot 3$	Hump......	17954.6	$4 \cdot 254175$
			$\begin{array}{llllll}241 & 1717 \cdot 2\end{array}$	$611918 \cdot 1$	Rabbit	$2284 \cdot 8$	$3 \cdot 358856$
			$3535148 \cdot 0$	1735211.8	Center	$3697 \cdot 1$	$3 \cdot 567856$
Monument No. 181 $13 \cdot 2$ feet north of X of the Boundar	$614840 \cdot 542$	$1255 \cdot 0$					
	$614840 \cdot 412$	1251.2	$81443 \cdot 6$	1881329.9	White River, West Base. .	$8557 \cdot 4$	3.932340
	$14100 \quad 00 \cdot 000$	$0 \cdot 0$	$300233 \cdot 6$	$20955 \quad 36 \cdot 7$	Traver.................	$13892 \cdot 2$	$4 \cdot 142771$
			522101.3	$2321728 \cdot 5$	Cache........	4469.7	$3 \cdot 650281$
			$1800000 \cdot 0$	$00000 \cdot 0$	W of the Boundary	$3417 \cdot 8$	$3 \cdot 533745$
Monument No. 182.	$614443 \cdot 781$ 141	$1355 \cdot 3$		$1800000 \cdot 0$			
	$1410000 \cdot 000$	$0 \cdot 0$	$\begin{array}{rrr}47 & 01 & 14 \cdot 1 \\ 305 & 22 & 06.4\end{array}$	227 225 125	White River, West Base..	$1677 \cdot 5$ 1334.8	$3 \cdot 224658$
			$\begin{array}{llll}305 & 22 & 06 \cdot 4 \\ 339 & 17 & 34 \cdot 3\end{array}$	$\begin{array}{lll}125 & 23 & 11 \cdot 7 \\ 159 & 19 & 01.1\end{array}$	White River, East Base . . Kletsan........	$1334 \cdot 8$ $4098 \cdot 2$	$\begin{aligned} & 3 \cdot 125405 \\ & 3.612598 \end{aligned}$
Monument No. 183.	61 143 51	$1605 \cdot 6$	$\begin{array}{llll}110 & 41 & 22 \cdot 3\end{array}$	2904008.7	White River, West Base. .	1311.8	$3 \cdot 117882$
	$1410000 \cdot 000$	$0 \cdot 0$	$\begin{array}{llllllllllllllllll}180 & 00 & 00 \cdot 0\end{array}$	0 5 $0000 \cdot 0$	X of the Boundary	8932.4	3.950967
			$2323124 \cdot 3$	$\begin{array}{llll}52 & 32 \quad 29.7\end{array}$	White River, East Base. .	$1371 \cdot 5$	3-137197
Monument No. 184 61.7 feet south of Y of the Boundary.	614308.025	$248 \cdot 6$					
	614308.632	$267 \cdot 2$	$60549 \cdot 7$	$1860420 \cdot 7$	Dalton.	$14027 \cdot 7$	4-146987
	$1410000 \cdot 000$	$0 \cdot 0$	$75 \quad 50 \quad 16 \cdot 6$	$\begin{array}{llll}255 & 43 & 19.9\end{array}$	Traver	$7173 \cdot 1$	$3 \cdot 855705$
			$\begin{array}{lllll}145 & 44 & 32 \cdot 0\end{array}$		White River, West Base..	$2180 \cdot 1$	3-338486
				$3344757 \cdot 2$	Cache.................	8329.7	$3 \cdot 920631$
			$\begin{array}{llll}180 & 00 & 00 \cdot 0\end{array}$	$00000 \cdot 0$ 0	X of the Boundary.......	$10270 \cdot 8$	$4 \cdot 011605$
			$2000632 \cdot 5$	$2009 \quad 13 \cdot 7$	Flat Top................	$7804 \cdot 2$	$3 \cdot 892326$
Monument No. 185.	61 149 $45 \cdot 307$	$1402 \cdot 5$	$1800000 \cdot 0$	$00000 \cdot 0$	Y of the Boundary.......	$6294 \cdot 2$	3.798941
	$1410000 \cdot 000$	$0 \cdot 0$	1910832.7	$\begin{array}{llllllllllll}11 & 11 & 13.9\end{array}$	Flat Top................	$13884 \cdot 3$	$4 \cdot 142525$
			$2052918 \cdot 9$	$253158 \cdot 5$	Little Boundary.........	$6188 \cdot 4$	$3 \cdot 791580$
Monument No. 186.	$613905 \cdot 882$	$182 \cdot 1$	$1293744 \cdot 1$	3093047.4	Traver.	$9030 \cdot 3$	3.955702
	$1410000 \cdot 000$	$0 \cdot 0$	$1800000 \cdot 0$	$00000 \cdot 0$	Y of the Boundary.......	$7514 \cdot 6$	$3 \cdot 875908$
			$1922006 \cdot 6$	$122133 \cdot 4$	Kletsan..................	$6783 \cdot 3$	$3 \cdot 831439$
			$2012205 \cdot 0$	$212444 \cdot 6$	Little Boundary.........	$7309 \cdot 0$	$3 \cdot 863857$
Monument No. 187	$\begin{array}{lll}61 & 37 \quad 13 \cdot 302\end{array}$	$411 \cdot 8$	$1800000 \cdot 0$	$00000 \cdot 0$	X of the Boundary.......	$21270 \cdot 5$	4.327777
	$1410000 \cdot 000$	$0 \cdot 0$	$\begin{array}{llll}188 & 09 & 19 \cdot 6\end{array}$	$81046 \cdot 4$	Kletsan........	$10215 \cdot 1$	$4 \cdot 009241$
			$2523405 \cdot 6$	$723817 \cdot 7$	Scoria	$4405 \cdot 9$	$3 \cdot 644036$
Monument No. 187A.	$613548 \cdot 659$	$1506 \cdot 3$	$\begin{array}{llll}180 & 00 & 00 \cdot 0\end{array}$	${ }^{0} 00000 \cdot 0$	Y of the Boundary.......	13619.9	$4 \cdot 134175$
	$1410000 \cdot 000$	$0 \cdot 0$	$\begin{array}{llllllllllllllll}186 & 29 & 35\end{array}$	63102.4	Kletsan...................	$12814 \cdot 1$	$4 \cdot 107689$
			$2265112 \cdot 6$	$465523 \cdot 7$	Scoria.........	$5761 \cdot 4$	$3 \cdot 760529$

GEOGRAPHIC POSITIONS OF BOUNDARY MONUMENTS-Concluded.

Stations.	Latitude. and longitude.	Seconds in meters.	Azimuth.	Back azimuth.	To stations.	Distance.	Logarithms.
Z of the Boundary	- , "		- , "	- - "		Meters.	
	$\begin{array}{rrr}61 & 34 & 25 \cdot 326 \\ 141 & 00 & 00 \cdot 000\end{array}$	$784 \cdot 1$	$\begin{array}{llll}146 & 30 & 04 \cdot 5 \\ 154 & 17 & 20 \cdot 8\end{array}$	$\begin{array}{lll}326 & 28 & 35 \cdot 6 \\ 334\end{array}$	Dalton.	2699.6 16031.8	3.431296 4.204982
	$1410000 \cdot 000$	$0 \cdot 0$	$\begin{array}{lll}154 & 17 & 20 \cdot 8 \\ 180 & 00 & 00 \cdot 0\end{array}$	$\begin{array}{rrrr}334 & 10 & 24 \cdot 3 \\ 0 & 00 & 00 \cdot 0\end{array}$	Traver.........	16031.8 16199.6	$4 \cdot 204982$ $4 \cdot 209503$
			$185 \quad 24 \quad 23 \cdot 2$	5 25	Kletsan.........	$15380 \cdot 0$	$4 \cdot 186956$
			$2124842 \cdot 7$	$325253 \cdot 7$	Scoria.	$7757 \cdot 4$	$3 \cdot 889714$
Boundary Crossing, 1913.	$61 \quad 31 \quad 15 \cdot 15$	$469 \cdot 0$	1693649	3493520	Dalton.	$8273 \cdot 8$	3.91771
	1405959.89	$885 \cdot 4$	1795900 2673815	3595900 873935	Z of the Boundary. Lambart, Mt.....	$5887 \cdot 1$ $1349 \cdot 7$	$3 \cdot 76990$ $3 \cdot 13022$
Point on Line.	$612941 \cdot 21$	$1275 \cdot 7$	1795958	3595959	Boundary Crossing.	$2907 \cdot 9$	$3 \cdot 46357$
	$140 \quad 59 \quad 59 \cdot 89$	$886 \cdot 2$	2042801	242921	Lambart, Mt.......	$3255 \cdot 9$	$3 \cdot 51267$
			3425828	1630056	Crag......	8522.5	3.93057
			3595950	1795950	Bald.	$2535 \cdot 9$	3.40412
Bald, 1913..	612819.291405959.88	$597 \cdot 1$	1934635	134755	Lambart, Mt	$5662 \cdot 3$	$3 \cdot 75299$
		$886 \cdot 6$	3030207 30601	1231208	Bo.	$12108 \cdot 0$	$4 \cdot 08307$
			3360159	1560427	Crag	$6142 \cdot 8$	3.78837
Monument Site, north side of Klutlan Glacier.	$61 \quad 2757.08$	$1766 \cdot 9$	1795935	3595935	Bald.	687.6	$2 \cdot 83731$
	$1405959 \cdot 87$	$886 \cdot 7$	3001323 333	1202324		$11747 \cdot 3$	4.06994
			3330804	1531032	Crag	$5521 \cdot 5$	$3 \cdot 74206$
Monument Site, south side of Klutlan Glacier.	$612605 \cdot 90$	$182 \cdot 6$	1795935	3595935	Monument Site, north side		
	1405959.85	$887 \cdot 2$	1795935	3595935	of Klutlan Glacier. . . .	$3441 \cdot 6$ $4129 \cdot 2$	$3 \cdot 53676$ $3 \cdot 61586$
			1875808	75928	Lambart, Mt	9722-5	3.98778
Monument No. 189................	605258.901	1823.0	$774614 \cdot 6$	$25734 \quad 27 \cdot 3$	Penn.	$12506 \cdot 9$	4-097151
	$1410000 \cdot 000$	$0 \cdot 0$	$1182632 \cdot 7$	$2982550 \cdot 9$	Blondie.	$818 \cdot 6$	$2 \cdot 913051$
			$2604714 \cdot 3$	$804720 \cdot 8$	Senator.	$116 \cdot 0$	$2 \cdot 064403$
			$12337 \cdot 7$	1812328.4	Boundary A	$6597 \cdot 5$	$3 \cdot 819382$
Monument No. 190.	$\begin{array}{rrr}60 & 52 & 20 \cdot 562 \\ 141 & 00 & 00 \cdot 000\end{array}$	$636 \cdot 4$	$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 189.	$1186 \cdot 7$	$3 \cdot 074345$
		$0 \cdot 0$	$1852534 \cdot 4$	$52541 \cdot 0$	Senator.	$1210 \cdot 7$	$3 \cdot 083038$
Monument No. 191................	$\begin{array}{rrrr}60 & 49 & 25 \cdot 380 \\ 141 & 00 & 00 \cdot 000\end{array}$	$\begin{array}{r} 785.5 \\ 0.0 \end{array}$	$1482045 \cdot 9$	$32815 \quad 51 \cdot 7$	Dane.	$9676 \cdot 5$	3.985717
			$1740742 \cdot 2$	$3540700 \cdot 5$	Blondie	$7035 \cdot 8$	$3 \cdot 847316$
			$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 189	$6609 \cdot 0$	$3 \cdot 820137$
			$1805922 \cdot 4$	05929.0	Senator	$6628 \cdot 6$	$3 \cdot 821423$
			$1800000 \cdot 0$	$00000 \cdot 0$	Monument No. 190	$5422 \cdot 5$	$3 \cdot 734198$

TABLE OF CERTAIN ELEVATIONS NOT INCLUDED IN THE TABLE OF GEOGRAPHIC POSITIONS.

Note: Elevations, unless otherwise specified, refer to top of station mark, or to surface	Elevation above Mean Sea-level.	
	Meters.	Feet.
Arden.	1111.9	3648
Dome (Upper Target)	897.4	2944
Far.	$974 \cdot 6$	3198
C of the Boundary	$735 \cdot 4$	2413
D_{1} of the Boundary.	$1396 \cdot 7$	4582
R 6.	$934 \cdot 9$	3067
Bald (Lat. $61^{\circ} 28^{\prime} 19^{\prime \prime} \cdot 29$)	$2338 \cdot 3$	7672
North Monument Site (Klutlan Glacier).	$1821 \cdot 3$	5975
South Monument Site (Klutlan Glacier).	$1741 \cdot 5$	5714
Boundary Crossing 1913 (Natazhat Ridge).	$2965 \cdot 5$	9729
Point on Line (Lat. $61^{\circ} 29^{\prime} 41^{\prime \prime} \cdot 21$. .	$2367 \cdot 1$	7766

PRECISE LEVELLING.

The spirit levelling connecting the work on the Boundary with sea-level at Skagway, Alaska, was done by the accepted methods for precise levelling work of this class, modified along certain lines to suit the exacting conditions introduced by the fact that the only feasible route for the line of levels lay for the greater part of its length, not along a convenient railway, but along a very rough and hilly northern trail which, by courtesy, was called a road, and which was full of sharp bends and broken by several rather long crossings over unbridged rivers.

It was found impossible, owing to the hilly nature of the greater portion of the route, to keep the foresight and backsight at each station even approximately equal, and at the same time to make anything like reasonable progress. The sights were therefore made as long as the ground and the refraction would allow up to three hundred feet, which was adopted as the limiting length of sight, as this was found to be the greatest distance at which, under ordinary conditions, one-thousandth of a foot could be estimated on the rod. For average length of sight see table on page 181.

The roughness of the ground also made it very difficult to set the instrument at the first trial in such a position as to get the longest sight possible and also to read to the extreme limits of the rods. To overcome this difficulty an extra man was added to the party, who, with a hand level, located the instrument and rod stations, and at the same time kept the sights as nearly equal as possible by pacing, the usual scheme of counting the rails for this purpose being, of course, not feasible. If, however, one or two instrument stations could be saved by lengthening out a sight so as to cross a ravine, or the summit of a hill, this was done, and as soon as possible afterwards the opposite sight was lengthened to balance up. The recorder kept the back and fore-sight intervals totalled and when they differed by over fifty feet in distance, he notified the hand-level man, who then evened up as soon as possible. Thus the sights were kept approximately equal throughout the day's levelling, and in closing on a bench-mark were always balanced up accurately.

The precise level used was constructed by Bausch and Lomb in accordance with the Coast and Geodetic Survey designs and specifications of $1900 .{ }^{1}$

The rods were of crossshaped section and slightly over 9 feet in length. They were made of selected white

Precise levelling.

[^51]

A temporary bench-mark.
pine, free from knots, shakes, or blemishes. The strips, about two and three-quarter inches by one inch, were boiled in paraffine to drive out the moisture and to impregnate the wood to prevent absorption of moisture later. The strips were boiled for six or seven hours in troughs heated by gas jets, and allowed to cool in the wax, the process being repeated for three days. After being finally removed from the wax the strips were dressed to size, the main portion, which was later to carry the graduations, being made about two and five-eights inches by seven-eighths of an inch. The side strips were than attached and the foot plate or shoe put on. This latter fits the bottom of the rod and carries a flat-bottomed plug, which in use fits the cavity in the turning pin. Silver plugs, onequarter of an inch in diameter and one-half inch long, were then set in the face of the rod, at the $3-$, $6-$, and 9 -foot points, the bottom of the plug on the shoe being zero. The rods then received three coats of white paint, and were ready for graduation, the first item of which was to mark accurately the 3-, 6-, and 9 -foot marks on the silver plugs by comparison with a standard bar, and after painting the graduations black and white showing hundredths of a foot, the rods were given a coat of varnish. In use the faces of the rods were carefully protected, and special boxes were provided for transportation.

Three turning pins were used, each having the bearing surface convex upwards in a cavity in the head of the pin, with a lower groove for sand and dirt. ${ }^{1}$ When the hand-level man located a rod station by driving in a turning

A permanent bench-mark.

[^52]pin, he received a pin for the next point from the rear rodman when he came forward. Thus the instrument man very rarely had to wait for a rodman to get his rod in position, and the speed of the party depended almost entirely on his speed and energy. By adopting an efficient method of setting up the instrument and adhering to it, a little time was saved on each operation, and the speed of the work kept at a high standard, as the following table will show:-

Year.	Working days.	Miles double line.	Average Miles per day double line.	Average number stations per day.	Average length of sight in feet.	Percentage re-levelled.
1908.	84	$141 \cdot 6$	$1 \cdot 7$	63	142	12
1909.	$119 \cdot 5$	$239 \cdot 4$	$2 \cdot 0$	69	153	11
1910.	68	$110 \cdot 2$	$1 \cdot 6$	58	144	10

As many as one hundred and ninety-five stations were observed in one day of nine hours.

The line was run forward in the morning and back in the afternoon. At the end of each hour's forward running a temporary bench-mark was set, consisting simply of a wooden plug with a nail in the top. These were entered in the notes as turning points, A, B, C, D, and E, but no record of them was kept in the abstract of results, as they were for checking purposes only. When the limit of error ($\mathrm{K} \vee \mathrm{S}$, where $\mathrm{K}=0.017$ feet and $\mathrm{S}=$ distance in miles) was exceeded on any section, the error could generally be located between two of these temporary bench-marks, and considerable time was thus saved.

At the end of each morning's run a temporary bench-mark ${ }^{1}$ of a more permanent type was made, consisting usually of a 4 - to 6 -inch green stump brought to a point at the top and tipped by a 3 -inch copper nail. The side was blazed and on it the words "Canada Geodetic Survey" and the number of the bench-mark were painted in red. Sometimes the nail was driven in a solid root or the bench-mark was made on a large boulder or on rock in place, these marks averaging one to three miles apart. It is estimated that these bench-marks on roots and stumps will be serviceable, under climatic conditions existing in the Yukon, for from twelve to twenty years.

Permanent bench-marks, ${ }^{2}$ consisting of capped iron posts or of bronze tablets, were set at an average distance apart of about ten miles. The posts were made of 4 -inch iron pipe 4 feet 10 inches long, coated with tar inside and out, split at the bottom for 10 inches, and the split parts turned out at right angles to prevent the post settling. On each post was rivetted a bronze cap marked " Geodetic Survey of Canada, B.M." and showing in feet the elevation above sea-level and the datum, as well as the caution " 500 dollars fine for disturbing this mark." Where possible, a bronze tablet of the same size and similarly marked was substituted for the post and cap, the tablet being cemented into rock in place by a central shank on the reverse side.

[^53]At all river crossings a permanent bench-mark was set on each side of the river, and the line carried over by repeated readings on each side, the instrument being reset between readings. At Yukon Crossing this method was checked by running a line over the ice in winter, and at Dawson the latter method only was used. A summary of the work at river crossings follows:-

River.	Date.	BM.	BM.	Length of sight in feet.	Readings on each side.	Closing in feet.	Remarks.
Takhini.	July 24, 1908	P 20	P 21	495	5	-. 0004	
Yukon at Yukon Crossing....	July 23, 1909	P 94	P 95	950	3	-. 026	Both target and direct readings used.
Yukon at Yukon Crossing....	Dec. 3,1909	P 94	P 95	950		-. 0076	Back and forward over ice. This value accepted. Temp. $-30^{\circ} \mathrm{F}$.
Pelly.	July 21, 1909	P118	P119	$\begin{gathered} 598 \\ \text { Longest } \\ \text { sight. } \end{gathered}$		$-.0048$	Back and forward. 7 stations between B.M.'s.
Stewart.	Aug. 31, 1909	P162	P163	350	2	$-.013$	Distance between B M.'s is 0.83 miles.
Yukon at Dawson.	Nov. 16, 1909	P223	P224				Forward and back over ice. Tempera ture $-10^{\circ} \mathrm{F}$.

Upon arrival at Yukon Crossing to check the levels over the ice, the temperature stood at -45° Fahrenheit. All oil was carefully cleaned off the various moving parts of the instrument, and four separate attemps to get the check resulted only in the " freezing" of the focussing apparatus, and frost bites for three of the party. A reconnaissance was then made and level stations were chosen exactly 50 feet apart, so that the focus would not have to be changed, the steep east bank of the river being descended by a "switch-back." The levelling was then made at a temperature of -30°.

The elevation thus carried in from Skagway, together with a determination of approximate mean sea-level at the Arctic Ocean and the railroad levels of the Copper River and Northwestern Railway, control the adjustment of all the elevations along the Boundary.

STADIA MEASUREMENT.

Between the main projection stations the establishment of the line was generally considered to be one of the duties of the stadia party, although at times when transport conditions were such that they could do so without interfering with the general progress of the work, the main projection party established "intermediates," using the same method as for main points, and these proved to be a great convenience to the stadia party following later.

On the greater portion of the boundary, however, the line between main stations was established by the stadia party, using the method of running toward the forward signal though at some points they were compelled to "line in" their instrument on
some convenient ridge between two main stations, thus locating a point on the line from which they ran north and south toward the main station signals. ${ }^{1}$

In addition to the actual establishment of the line, the work of the stadia party included the measurement of the line, the selection of monument sites, and tying them in to the triangulation, and later the setting of the monuments.

The line was measured by ordinary stadia methods, using 4 -inch Berger transits with a stadia interval of $1 / 100$. Various styles of rods were used, the work of 1907 and 1908 being done with folding telemeter rods graduated specially for the instruments, while in 1909, 1910, 1911, and 1912 standard Keuffel and Esser rods of both the telescoping and folding patterns were used, graduated to feet and hundredths, the " $c+f$ correction" being applied throughout. For the first four years of the work, two rods were used by each party, and back- and fore-sights were taken at each station, the horizontal distances and differences of elevation being computed from the mean readings. After 1910, however, the stadia parties each used one rod only, keeping it ahead of the instrument and making direct and reverse readings on it, the computations, as before, being made from the mean readings. This method gave practically the same results with about the same amount of instrument work, and released the rear rodman for other duties in connection with the party.

The main objects of this stadia work were to provide a profile of the line, to furnish distances to features of the topography between main projection stations, to furnish the plane-table parties with elevations of points along the line to facilitate their work, and, in addition, to provide a means of checking the mapping of the topography.

The stadia distances were checked by the triangulation, and the differences of elevation by the vertical angles read in connection with the triangulation. This checking was done in sections, the portion of the line between any two consecutive main projection stations being considered a section for this purpose, the differences, horizontal and vertical, being distributed among the stations of a section proportionally to the distance, i.e., these differences or errors were assumed to be uniform throughout a section.

A large scale profile of the season's work was made each year from the stadia notes, while a profile of the entire line on a much smaller scale is published in connection with the topographic sheets.

While it was not always possible for the stadia party to keep ahead of the topographic party, as the rate of progress of the former was regulated largely by the amount of cutting to be done in opening the vista, they were able to furnish useful data to the topographic parties covering a considerable proportion of the work.

Comparison of Stadia Results.

The following tables show at a glance the work done by the various stadia parties in connection with the vista-cutting and monumenting.

The first table gives the distances, and the errors and ratios, horizontal and vertical, along the whole line by sections, each section being the distance from one projection station to the next, except where the work of any year did not end exactly at a projection station. The computed distance in the third column is the value resulting

[^54]from the final adjustment of the triangulation. In the last column the ratio given is that of the vertical error to the horizontal distance.

The second table gives a summary of the same information concerning the work year by year, and showing also the grand total. The total distance run by stadia was 556.67 miles, and covers practically the entire line from the Arctic Ocean to the northern slope of the Natazhat Range, except the crossings of the rivers Porcupine, Yukon, and White, and north of the Sixtymile, a short distance was measured by triangles with short bases at right angles to the line, to save time, late in the season of 1907.

TABLE I.

From	To	Computed distance. Feet.	Stadia error. Feet.	Ratio of error to horizontal distance 1 to	Stadia error in elevation. Feet.	Ratio of error in elevation to horizontal distance, 1 to
Cetera.	Et.	$62541 \cdot 9$	- 97.9	639	- 0.6	104236
Et.	Z	$20826 \cdot 4$	-113.4	184	+ 1.8	11570
Z_{1}.	Y 1	$43742 \cdot 7$	$-230 \cdot 7$	190	+ 24.8	1764
Y_{1}.	X_{1}	$54471 \cdot 6$	$+33.4$	1631	+ 66.1	824
X_{1}.	W ${ }_{1} \ldots$	73231.6	$-304 \cdot 6$	240	$+47.6$	1538
W1..	Mon. No. 19	38245.9	-223.9	171	- 69.3	553
Mon. No. 19	$\mathrm{V}_{1} \ldots . . .$.	$12507 \cdot 0$	$+25.0$	500	- 14.2	881
$\mathrm{V}_{1} \ldots . .$.	U_{1}	$32936 \cdot 9$	+ 93.1	354	-41.6	792
U_{1}	T_{1}.	$60306 \cdot 5$	-186.5	323	- 63.6	948
T_{1}.	S_{1}	$61093 \cdot 8$	$+160 \cdot 3$	381	$+130 \cdot 0$	469
S_{1}.	R_{1}.	$127121 \cdot 0$	- 7.8	16298	+ 31.7	4010
R_{1}.	Q1.	$113827 \cdot 1$	$+149.3$	762	- 1.3	87559
Q1.	P_{1}.	59780.5	$+133.5$	448	+ 7.8	7664
P_{1}.	Mon. No. 50.	$54976 \cdot 3$	- 35.0	1571	+ 4.7	11697
Mon. No. 51.	O_{1}.	22691.4	- 79.5	285	$+13.8$	1644
O_{1}.	N_{1}.	77373.9	$+57.1$	1355	-261.0	297
N_{1}.	Mon. No. 62.	$69127 \cdot 0$	$+178.5$	388	- 98.3	703
Mon. No. 62.	M ${ }_{1}$.	41898.9	-73.5	570	-41.9	1000
M_{1}.	L ${ }_{1}$.	$71385 \cdot 5$	$+175.8$	406	-141.8	503
L_{1}.	K_{1}	$78902 \cdot 2$	$+31.1$	2537	-124.4	634
K_{1}.	J_{1}	$66627 \cdot 6$	$+353.7$	188	-12.8	5205
	I_{1}	$56697 \cdot 8$	-112.1	506	-138.1	411
I_{1}	H_{1}	$73542 \cdot 3$	-471.8	156	$+76 \cdot 5$	960
H_{1}.	G1.	$107252 \cdot 2$	-889.7	120	-124.8	859
G_{1}.	F_{1}	$82986 \cdot 0$	$-370 \cdot 6$	224	-141.6	586
F_{1}	E_{1}.	$31573 \cdot 2$	-319.6	99	$+60 \cdot 3$	524
$\mathrm{E}_{1} .$	D_{1}	$58130 \cdot 4$	$-184 \cdot 1$	316	+ 53.8	1080
$\frac{\mathrm{D}_{1}}{.}$	C_{1}	$18516 \cdot 7$	-127.7	145	-55.8	332
C_{1}.	B_{1}.	$52840 \cdot 4$	-231.4	228	- 7.2	7339
B_{1}.	$A_{1} \ldots . .$.	$57538 \cdot 3$	$-525 \cdot 3$	110	$+\quad 0.2$	287692
$\mathrm{A}_{1} \ldots \ldots$	Mon. No. 111	27087.6	$-180 \cdot 5$	150	+ 13.9	1949
Mon. No. 112	D.	18279.7	-145	126	$+138$	132
D...........	E.	$25599 \cdot 6$	-125	205	+210	122
E.	F.	$50670 \cdot 9$	- 72	704	+ 5	10134
F	G.	$123006 \cdot 6$	-215	572	-204	603
G	H.	$24492 \cdot 9$	- 59	415	- 27	908
H.	Mon. No. 129	$32120 \cdot 4$	-133	242	-43	747
Mon. No. 131	I.........	$32042 \cdot 6$	$+213.9$	150	$+113.8$	281
I............	J.	44599.4	+284.6	157	+ 28.7	1554
J.	K..........	83676.4	+244.6	342	$+135.4$	625
K.	Mon. No. 147	73385.5	$+349.5$	210	-425.3	173
Mon. No. 147	L...........	32155.4	$-365 \cdot 3$	88	- 37.9	848
L..	M_{1}	7333.7	+ 5.2	1410	- 1.3	5641
M_{1}	N.	$50462 \cdot 3$	-41.3	1222	- 7.0	7209
N.	O.	$74983 \cdot 8$	$+25.2$	2976	+ 0.5	149967
0.	P	31717.4	- 37.4	848	+ 11.5	2758
P.	Q.	$19866 \cdot 4$	-11.4	1743	- 6.6	3010
Q.	R..........	$39735 \cdot 2$	$+304 \cdot 3$	131	- 2.4	16566
R...	Mon. No. 165	$15915 \cdot 5$	$-10 \cdot 0$	1591	- $2 \cdot 1$	7579

TABLE I-Concluded.

From	To	Computed distance. Feet.	Stadia error. Feet.	Ratio of error to horizontal distance 1 to	Stadia error in elevation. Feet.	Ratio of error in elevation to horizontal distance, 1 to
Mon. No. 165.	S.	$18894 \cdot 6$	$+41.3$	458	$-17 \cdot 0$	1112
S.	T	$125763 \cdot 8$	$+199.9$	629	- 21.6	5822
T.	U	$20961 \cdot 3$	$+211.9$	99	-27.9	751
U	V	$5627 \cdot 0$	+ 9.3	605	$+11.6$	485
V.	W	$77824 \cdot 2$	$+141.0$	552	$-106 \cdot 6$	730
W.	X.	$11213 \cdot 7$	$+24.5$	458	+ 31.3	358
X.	Mon. No. 182.	$24033 \cdot 1$	-31.3	768	- 13.0	1848
Mon. No. 183	Y	$4391 \cdot 1$	+ 18.1	242	- $6 \cdot 2$	708
Y.	Mon. No. 187.	$36088 \cdot 4$	$+162 \cdot 8$	222	+ $3 \cdot 3$	10936

TABLE II.-SUMMARY OF STADIA WORK BY YEARS, AND GRAND TOTAL.

''A 20-foot clear sky-line.'

VISTA CUTTING.

Wherever timber was encountered on the line, a vista was cleared through it having a " 20 -foot clear sky-line " i.e., nothing except low underbrush was left standing within 10 feet of the line on either side. In some localities this necessitated the felling of trees at a considerably greater distance from the line than ten feet in order to clear away the overhanging branches, as none of these were allowed to remain within the 20 -foot limit, and though this increased the cutting very much at certain points, the line now constitutes a very prominent and noticeable feature of the landscape, and one that will remain so for very many years owing to the slow growth of timber in those northern latitudes.

MONUMENTING.

The chief of the stadia party selected the sites for the permanent monuments. Naturally the main projection stations were usually chosen as monument sites, and sufficient sites between these were selected to fulfil the conditions governing the monumenting.

Article II of the Convention of 1906^{1} reads, in part, as follows:-
" The location of the 141st Meridian as determined hereunder shall be marked by intervisible objects, natural or artificial, at such distances apart as the Commissioners shall agree upon, and by such additional marks as they shall deem necessary

The Commissioners, in accordance with this Article, agreed that the line would be sufficiently marked by setting monuments at suitable intervals along it, subject to the following general conditions:-

1. The monuments should be at an average distance apart of not more than three miles.
2. Except where topographic conditions rendered it impracticable, the distance between any two adjacent monuments should not exceed four miles.

[^55]3. The monuments thus set should be intervisible, this being interpreted to mean that each monument should be intervisible with one or more other monuments, though not necessarily with an adjacent monument.
4. The monuments set between points determined by the line projection party should be carefully aligned, and their departure from the true line should in no case exceed one foot.

Thirty-inch conical monuments of aluminum bronze were adopted for general use, except that at the crossings of the larger rivers five-foot pyramidal monuments of the same alloy were substituted for the smaller type.

In all, eleven of these large monuments were set, located as follows:-

Monument No.	1	Arctic Coast.
32	Old Crow River.	
50	Porcupine River.	
70	Black River.	
111	Yukon River, north bank.	
112	Yukon River, south bank.	
121	Fortymile River.	
130	Sixtymile River.	
147	Ladue River.	
182	White River, north bank.	
183	White River, south bank.	

To facilitate transportation on pack-horses, these large monuments were made of the same sectional design as those used in monumenting the Boundary Line along the 49 th Parallel west of the summit of the Rocky Mountains, their principal dimensions being: height 63 inches, width at bottom 10 inches, width at top 6 inches, and their average thickness about one-quarter of an inch. The total weight of each, including base-plates, bolts, etc., is about 250 pounds. The cut on page 188 shows dimensions and details of design.

The smaller monuments are 30 inches in height and 9 inches in diameter at the bottom, with four fluted legs, each 9 inches in length. They are of about the same average thickness as the large monuments, and each weighs from 55 to 60 pounds. The details are shown on page 189 .

A copy of the specifications for one lot of the small monuments follows, in part, and gives details as to the composition of the alloy, and its tensile strength, and other conditions to be complied with.

Specifications for aluminum bronze Boundary Monuments:-

1. The bronze shall consist of aluminum and copper with no admixture of zinc or tin. It shall consist of not less than eight and one-half per cent ($81 / 2 \%$) or more than ten and one-half per cent $(101 / 2 \%)$ of the best aluminum, and the balance of the best copper. The tensile strength of such casting must exceed forty thousand (40,000) pounds per square inch.
2. On two diametrically opposite positions on the monuments are to be cast in raised letters the words " Canada " and " United States," as shown in the accompanying drawings.
3. The monuments must be good sound castings, free from blow holes or flaws. The body of the monument must be of uniform thickness throughout except at the top, where it is to be made somewhat heavier, as shown in the drawings, to permit of driving the legs into drill-holes in rock.
4. Owing to the great shrinkage of aluminum bronze, great care must be taken that at the junction between body and legs shrinkage cracks do not occur and weaken the legs. The stability of the monument depends on the strength of the legs, and no monuments will be accepted with any defect of the above nature.
5. On completion, the monuments will be examined by an inspector appointed by the department and only those found satisfactory will be accepted.

All parts to be of aluminum bronze according to measurements.

Shaft to be $1 / 4 \mathrm{in}$. thick.
Holding-down bolts to be 24 in ., with thread cut 5 in.

Approximate Weight. 3 sections of shaft 50 lb . (each) 153 lb . Base plate Anchor plat
Bolts and nuts,
Total Weight_-------- 253 lb .

Scale of inches
012345678910112

Details of large monuments.

6. Each monument is to be suitably packed for shipment in a separate box or crate, and delivered f.o.b. cars, Whitehorse, Yukon Territory

In designing these small monuments, provision was made for setting them in solid rock by drilling four holes into which the legs could be driven and then grouted with cement. In practice, however, all the monuments, both large and small, were set in concrete bases, no instance occurring where there was solid rock at the monument site suitable for drilling.

The concrete bases averaged 3 feet square and from $21 / 2$ to 3 feet deep. Each contained 200 pounds of cement, except in a few cases where the cement supply was low, with sand and broken rock in the proportion of $1: 2: 4$, the base or pier being finished off smoothly with a rich mixture of cement and sand.

In setting the earlier monuments a wooden frame was made to shape the upper edge of the base, but later, when it was difficult or impossible to procure suitable wood for this purpose except by hewing it out, and when practice had, to some extent at least, made perfection in the matter of excavating base pits square and true with sharp corners and edges, the forms were dispensed with, and much valuable time saved.

For the large monuments a thin layer of rather " poor " concrete was first tamped into the bottom of the pit, then a good mixture added until the proper level was reached for the setting of the anchor plates and bolts. After these had been set, concrete was added almost up to the level of the base-plate, and this was allowed to set until sufficiently strong to support the weight of the monument. The base-plate was then centered and adjusted, the monument assembled and fastened to the base-plate and made plumb, then the remainder of the concrete was tamped in and the facing put on.

In the case of a small monument, good concrete was well tamped in on top of a thin layer of poor mixture until, when the monument was set on the concrete, its base was just about at ground level. It was then centered and made plumb, and the balance of the concrete added and faced, as with the large monuments.

Two methods of centering a monument were employed. If the site had already been tied in to the triangulation, great care was exercised to get the monument exactly over the point selected. This was done either by the instrument man setting four reference hubs from which the monument man measured later, or if only the monument hub itself was set, a large tripod was erected and so adjusted that a plumb-bob suspended from the apex hung directly over the point. Care was then taken not to disturb this tripod during the excavation of the pit or the setting of the monument, which was centered by the plumb-bob.

When the monument was not to be set exactly at the instrument station, the instrument man simply set two hubs on line near the instrument and, say, three or four meters apart, and the monument was set where most convenient between these points, the distance to the instrument station being afterwards carefully measured and recorded.

As may be easily imagined, it was only occasionally that good sand, suitable rock, and a water supply were convenient to a monument site, and it was the first duty of the monumenting party to " prospect " for sand, rock, and water, and then to get them to the site by pack-horse. Rock was usually found reasonably close, and was broken up by hand with a light mashing hammer. Water was carried to the site in cylindrical cans with a capacity of about ten gallons each, three of these usually being required for each base. Good sand was sometimes very difficult to locate, and on one occasion had to be carried over 8 miles.

The cement was specially packed in double sacks, an inner sack of light cotton containing 50 pounds of cement loosely packed, with an outer sack of eight ounce duck for protection against dampness and rough handling. It was found that the cement kept in much better condition and was much more easily handled, particularly on packhorses, when packed loosely than when made up into small compact packages. The concrete was mixed on a mixing sheet of 10 -ounce canvas, 8 feet square, a place being levelled for it when necessary close to the monument site. With this sheet three men, or preferably four, could mix the concrete for a pier in about four batches.

In spite of the roughness of some parts of the country, it was found possible to take the monument, the materials for the pier, and the tools, by pack-horse to every site but two on the whole line between Mount Natazhat and the Arctic Ocean. Curiously enough, these two exceptions were Nos. 12 and 181, originally projection stations X and X_{1},

Type of small monument, and method of numbering. See page 192.

Type of large monument. (Monument No. 182.) he outfit had to be back-packed by the men for a short distance.

It should not be judged, however, that because it was possible to take the horses to most of the sites, it was easy to do so. It was found more economical, on account of the great weight of material to be moved, to spend time prospecting for and making a trail up to a site, than to attempt to carry the material any distance on the men's backs. When neither sand, rock, nor water was available at a site, the total weight to be moved was about eighteen hundred pounds, made up as follows:-

It can easily be seen how the monumenting pack-train came to be known as the " goat train." The horses soon learned to recognize the pickets and signals left by
the instrument party, and after a hard climb would gather round the first signal they came to, and appeared quite indignant at not having their packs removed, if it did not happen to be the monument site.

The monuments were numbered consecutively from the north, No. 1 being the large monument on the Arctic coast. At various points where the distance between adjacent monuments, as originally set, seemed excessive, and where a suitable site could be found, extra monuments were set by the inspection party, each of these new monuments being given the same number as the monument immediately north of it, qualified by an "A," thus, 46 A . The numbers were drilled into the monuments, using specially prepared brass templates. The figures are one and one-half inches in height and each figure is composed of a series of eighth or three-sixteenth-inch holes drilled to a depth of about one-eighth of an inch. A brass collar with set-screws was originally designed to hold the templates on the monument during the drilling, but a good strong leather thong was found to be an efficient substitute for the cumbersome collar.

TOPOGRAPHY.

Article II of the Convention of 1906^{1} specified that the location of the marks should be described " by such views, maps, and other means" as the Commissioners should think necessary.

In accordance with this clause and the resultant decision of the Commissioners, a belt of topography along the boundary averaging four and a half to five miles wide, was mapped on a field scale of $1 / 45,000$, with a contour interval of 100 feet. From the Arctic Ocean to Mount Natazhat this mapping was done by ordinary plane-table methods, while between Mounts Natazhat and St. Elias the photo-topographic camera was employed, using the plane table for securing the details of some of the glaciers and main valley bottoms.

For the plane-table mapping, Fauth telescopic alidades with verniers reading to 1^{\prime}, and standard United States Geological Survey 18 inch by 24 inch plane tables with Johnson head tripods were used. Stadia measurements along the Boundary Line furnished contour and stream crossings and the positions of summits, and stadia and foot traverses of streams and gentle slopes controlled the drainage and location and spacing of contours where necessary. These traverses were adjusted between control points and the sketching was done by the topographer from monument sites, triangulation stations and other points occupied by the plane table. Timber sheets showing the character and density of the timber, and bare and burned areas, were also made in the field by the topographer, from which the timbered areas were shown on the published sheets by conventional symbols.

The triangulation, as already shown, furnished the trigonometric control for the topography, but when the topography was in advance of the triangulation, as it was on one or two occasions at the beginning of a season, the topographers measured a short base and used a small temporary system of triangulation until they could adjust their work to the main scheme.

As already explained on page 32, an approximate datum of 835 feet above mean sea-level was adopted for water level of the Yukon River at the crossing of the boundary, the elevations being carried north and south by the vertical angles read in connection with the triangulation. A temporary datum was also adopted at the White

[^56]River when independent work was commenced there in 1909, and these datum-planes were later adjusted to the precise level results at Monument No. 126, to mean sealevel at the Arctic Ocean, and to the Copper River and Northwestern Railway levels. ${ }^{1}$ When all adjustments were made, the assumed datum at the Yukon was found to be in error only 38.4 feet, the correction being plus, and the elevations deduced from the vertical angles were found to be very satisfactory, the corrections being small, considering the distances the elevations had been carried.

For the rough and almost inaccessible region between Mount Natazhat and Mount St. Elias the photo-topographic camera was used, governed, like the plane table, by trigonometric control. In this region the camera proved itself indispensable, as, on account of bad weather conditions and the ruggedness of the country, the mapping probably could not have been done by any other method without serious loss of time. Both the Canadian and the United States patterns of camera were used, following the usual method as laid down in Deville's "Photographic Surveying"" and Flemer's " Photographic Methods and Instruments." ${ }_{3}$ In 1907 and 1908 a photographic survey was also made of the topographic belt from the Yukon south for over one hundred miles.

The camera work was plotted in the office on a scale of $1 / 40,000$, with a contour interval of 100 feet, the sheets being therefore similar to the plane-table sheets,except that the former embraced fifteen minutes in latitude each, while the latter covered only ten minutes.

It is interesting to note that in plotting the topography between Mount St. Elias and the Logan Glacier, extensive use was made of a series of photos taken from a shoulder of St. Elias by the official photographer of the Abruzzi expedition in 1896. The focal length and azimuths of these photos were found graphically, and in combination with the photos taken by the topographers of the Boundary Survey, they yielded considerable valuable information.

MAPS.
The total area covered by the two methods, plane-table and camera, was about six thousand square miles, though only a little over half of this is shown on the boundary sheets, their scope being confined to the narrow belt along the line.

Each of the sheets covers fifteen minutes of latitude, and is published in the conventional colours. All are on a scale of $1 / 62,500$ which, for all practical purposes, may be taken as one mile to the inch. There are thirty-eight sheets in all, the sheet showing the Arctic Coast being No. 1, and the others being numbered consecutively southward with Mount St. Elias on Sheet No. 38.

In addition to the usual details of the ordinary map as to title, scale, etc., these sheets show the names ${ }^{4}$ of the chiefs of the parties and sub-parties who did the work, both United States and Canadian, and bear certificates showing that the maps are true copies of the originals. The certificates read as follows:-

We certify that this map is a copy of Sheet No......... of the thirty-eight (38) maps prepared and adopted by us under Article II of the Convention between Great Britain and the United States, signed at Washington April 21, 1906, on which we marked the Boundary Line as established in accordance with said Convention.

[^57]On each sheet this certificate bears the signatures, in facsimile, of the two Commissioners. The thirty-eight maps referred to in this certificate are the original maps prepared in quadruplicate, printed on special bond paper, and actually signed by the Commissioners, two sets of which have been deposited by each Commissioner with his Government. The certificates on these quadruplicate "originals" read:-

We certify that this map is one of the two (2) duplicate sets of thirty-eight (38) maps prepared and adopted by us under Article II of the Convention between Great Britain and the United States signed at Washington April 21, 1906, and that we have marked thereon the Boundary Line as established in accordance with said Convention.

These maps were engraved on copper, and the engravings were then transferred to stone, from which the maps were printed. A limited edition of the maps was printed for each Government and is to be issued in atlas form, complete with title page, index sheet, and a profile of the line.

In addition to the regular thirty-eight sheets there are two supplementary sheets, one on a scale of $1 / 125,000$ showing the topography in the vicinity of Monument No. 1 at the Arctic Coast and as far west as Demarcation Bay, and the other on a scale of $1 / 250,000$, showing such topography as it has been possible to develop from photographs secured by the parties working in the region between Mount Natazhat and Mount St. Elias.

It is interesting to note that in developing the topography outside the limits of the regular boundary maps, the topographers have been able to identify two of the peaks seen by Abruzzi from the summit of Mount St. Elias, and named by him Bona and Lucania. In plotting from the photographs, a high peak was noted well to the westward of Mount Natazhat, and a search through the results of the triangulation showed a peak, called "Dome" at the time of observation, in latitude $61^{\circ} 23^{\prime} 03^{\prime \prime} .16$ and longitude $141^{\circ} 45^{\prime} 04^{\prime \prime} .22$, this being later identified as Mount Bona.

Mount Lucania is also well connected with the triangulation, the computations giving its position as, latitude $61^{\circ} 01^{\prime} 16^{\prime \prime} .05$ and longitude $140^{\circ} 27^{\prime} 54^{\prime \prime} .15$, with an elevation of 17,147 feet. While in the field the observers took this peak to be Mount Steele, named by McArthur when he saw it in 1900 from the mountains on the east side of Lake Kluane.

Abruzzi says of these peaks:-
On the far horizon, somewhere between fifty and one hundred miles off, a broad summit towered up behind the western corner of Mount Logan, which was ascertained by the compass to be at 328°. H.R.H. named this peak "Lucania" in remembrance of the ship that had brought us to America. West of this new peak, at about the same distance and due north of St. Elias, we described another great mountain at 326°, which we believed to be identical with the peak christened Mount Bear by Russell in 1891. Finally, to the northwest, some 200 miles off, a conical peak soared up at 311°, apparently of even greater height than the other two. This was christened the "Bona," after a racing yacht then belonging to H.R.H. These three peaks really seem to rival Mount St. Elias in height, and must approach 18,000 feet in height. None of them showed any sign of volcanic activity. ${ }^{1}$

On his panoramic view, taken from the northwestern ridge of Mount St. Elias at an elevation of 16,500 feet, he marks these peaks and also Mount Logan and Mount Bear, and even a casual examination of his statement in the above paragraph will show that there has been an error, probably typographical, as his bearings give 15° between Mount Bona and Mount Bear, and only 2° between Mount Bear and Mount Lucania. Mount Bear is easily identified from Russell's description, ${ }^{2}$ and by laying

[^58]off Abruzzi's bearings on the map, beginning with Mount Bear as 326°, Mount Bona reads 311° almost exactly, while Mount Lucania reads 348°, Abruzzi's 328° being evidently a typographical error for this. The magnetic declination also shows as 29°, which is fairly correct.

The elevation of Mount Bona, determined trigonometrically, is only 16,421 feet and it is distant from Mount St. Elias only about eighty miles, but the evidence in favour of the identification is so strong that Abruzzi's estimate of distance and elevation may safely be disregarded.

The only departure from conventional mapping methods will be noticed in connection with the glaciers and snowcapped peaks of the southern portion of the line. It was early seen that on account of the vastness of the ice and snow-fields, and the great number of permanently ice and snow-capped mountains, ordinary methods suitable for indicating small fields of snow and ice would be entirely inadequate. After considerable experimenting and discussion, it was finally decided to contour these vast fields in blue, using brown as usual for the terraine, as it was felt that with so much detailed information on file as to the conformation of these fields, shown on the photographs of the region, it would be a mistake not to take advantage of it and incorporate it in the maps.

OBSERVATIONS FOR MAGNETIC DECLINATION.

The earliest value of the magnetic declination in the vicinity of the 141st Meridian of which we have record was determined at sea south of Mount St. Elias in May, 1778, by Captain Cook. Observations on shore at Port Mulgrave (Yakutat Bay) were made by Captain Dixon in 1787, by Malaspina in 1791, by Vancouver in 1794, by Khromchenko in 1823, and since the purchase of Alaska by the United States, by officers of the Coast and Geodetic Survey in 1874, 1880, 1892, and 1903, and at several triangulation stations between Port Mulgrave and Mount St. Elias in 1892 and 1894.

In 1887, Wm. Ogilvie, D.L.S., made magnetic observations at several places in connection with his determination of the 141st Meridian at its intersection with the Yukon River, and an extended series of observations was made at Camp Davidson on the Yukon near the boundary by J. E. McGrath of the Coast and Geodetic Survey in 1889-91, while J. H. Turner of the same bureau made observations in 1889-90 at Rampart House on the Porcupine River, in the valley of the Three Rivers, and at the mouth of the Firth River. Observations were made near a number of Ogilvie's stations by J. C. Pearson, magnetic observer of the Department of Terrestrial Magnetism of the Carnegie Institution of Washington in 1907, and by J. W. Green of the Coast and Geodetic Survey in 1908.

In connection with the demarcation of the 141st Meridian, magnetic observations were made by A. I. Oliver in 1908, 1909, and 1910, by D. W. Eaton in 1910, by Thos. Riggs, jr., in 1910 and 1913, by W. C. Guerin in 1909 and 1910, by F. S. Ryus in 1910, by A. C. Baldwin in 1911, and by W. B. Gilmore in 1912. The results in 1908, 1909, and 1910, for which the year only is shown, were determined by the compass needle and protractor of the plane table, and are not reduced to mean of day. The other results of observations taken since 1907 were determined by means of Coast and Geodetic Survey compass declinometers. The results of these observations are shown in the following table.

VALUES OF THE MAGNETIC DECLINATION IN THE VICINITY OF THE 141ST MERIDIAN.

NOTE.-Results since 1907 showing the year only are by compass needle and plane-table protractor. Other results since 1907 are from observations with U. S. C. \& G. Survey compass declinometers.

Station.	Latitude.	Longitude.	Date.	$\begin{gathered} \text { Declina- } \\ \text { tion, } \\ \text { East } \end{gathered}$	Observer.
		-		-	
Near Monument No. 1	6939	14100	1912 Aug. 2	4022	W. B. Gilmore.
Mosquito.........	27	14113	1912 July 22	4038	
Aurora. .	15	14050	1912 July 11	4037	"
Near Empire.	6908	14053	1912 June	4042	"
Tub.........	6858	14058	1912 June 17	3951	A.
Siwash	48	14118	1911 July 30	3901	A. C. ${ }_{\text {Baldwin. }}$
Shark.	39	14055	1911 July 28	3911	" ${ }^{\text {a }}$
Valley of Three Rivers	37	14100	1890 April	4033	J. H. Turner.
Coral.	31	14114	1911 July 18	3809	A. C. Baldwin
Wee. .	25	14114	1911 July 15	3809	"
Yankee	19	14113	1911 July 8	3752	"
Pasture	6808	14114	1911 July 1	3820	"
Comb.	6750	14112	1911 June 26	3855	"
Gun.	36	14058	1911 June 13	3842	W."
Near Monument No. 50	25	14100	1912 May 30	3704	W. B. Gilmore.
Camp Colonna.	6725	14059	1890 June	$\begin{array}{lll}38 & 06 \cdot 8\end{array}$	H. W. Edmonds.
Storm....... .	6651	14108	1910 Aug. 28	3703	T. Riggs, jr.
	37	14102	1910	3725	A. I. Oliver.
	37	14057	1910	3735	"
	36	14054	1910	3715	"
	36	14107	1910	3745	"
	34	14104	1910	3815	"
	33	14103	1910	3710	"
	33	14102	1910	3735	"
	33	14103	1910	3730	"
	31	14102	1910	3715	F.
	29	14100	1910	3730	F. S. Ryus.
	25	14100	1910	3720	" ${ }^{\text {c }}$
Igloo.	21	14111	Aug. 1	3640	T. Riggs, jr. F. S. Ryus.
	21	14100		3700	
	19	14102	1910	3715	
Fishing.	14	14059	1910	3715	
Fishing	14	14059	1910	3650	A. I. Oliver.
Stripe	11	14059	1910 July 20	$\begin{array}{ll}37 \\ 37 & 10\end{array}$	F. S. Ryus.
	06 6600	14058 14100	1910 July 20	3706 3700	A. I. Oliver. W. C. Guerin.
Bench. Kandik.	65575555	14116	1910 July 15	3634	A. I. Oliver.
		14054	$1910 \text { July } 11$	3701	
		14100	1910	3700	
Fire.	6548 46	14112 14100	1910 July 9	3631 3645	A. I. Oliver. W. C. Guerin.
Seal.	46	14050	1910 July 7	3612 37	A. I. Oliver.
	44	14100	1910	3645 3655	W. C. Guerin.
	39	14100	1910	3655	
Union.	36	14101	1910 June 28	3637 36	A. I. Oliver.
Halley	34 34	$\begin{array}{ll}141 & 04 \\ 141 & 04\end{array}$	1910 June 27	3645 3626	W. C. Guerin. A. I. Oliver.
Yellow	28	14103	1910 June 19	3636	, "
	26	14101	1910	3640	W. C. Guerin
	21	14100	1910	3710	"
Casca.	21	14103	1910 June 13	3622	A. I. Oliver.
	20	14101	1910	3640	F. S. Ryus.
	16	14108	1910 June 9	3635	A. I. Oliver.
View, N.E	16	14055	1910 June 8	3620	F S."
	16	14100	1910	3710	F. S. Ryus.
	14	14102	1910	3900	
	13	14056	1910	3500	"
	13	14104	1910	3655	"
	12	14056	1910	3515	"
	10	14059	1910	3610	"

VALUES OF THE MAGNETIC DECLINATION, ETC.-Continued.

Stations.	Latitude.	Longitude.	Date.	Declination, East.	Observer.
	- ,	-		- 1	
	10	14100	1910	3620	F. S. Ryus.
	10	14100	1910	3600	W. C. Guerin.
	04	14100	1910	3600	W. ${ }^{\text {c }}$
	6500	14100	1910	3605	"
	6457	14103	1910	3605	"
	57	14100	1910	3600	"
	52	14101	1910	3545	"
	47	14104	1910	3510	"
Fort Egbert.	47	14112	1908 June 20	35 55.5	J. W. Green.
Fort Egbert........	47	14112	1905 July	3551 35	E. Smith.
	42	14100	1910	3530	W. C. Guerin.
Monument No. 112.	41	14100	1913 June 29	3507	T. Riggs, jr.
Boundary..........	41	14100	1907 Aug. 27	$3531 \cdot 0$	J. C. Pearson.
Camp Davidson.	41	14054	1908 June 19	35 35	J. W. Green.
	41	14054 14054	1907 Aug. 28 1889-91	$3541 \cdot 2$ $3544 \cdot 8$	J. C. Pearson.
"	41	14054	1888 Feb. 27	35 35 $46 \cdot 4$	W. Ogilvie.
Monument No. 114A	36	14100	1913 June 30	3455	T. Riggs, jr.
Fortymile..........	26	14032	1887 Sept. 12	$3501 \cdot 1$	W. Ogilvie.
	25	14035	1908 June 19	34 $41 \cdot 2$	J. W. Green.
"	25	14035	1907 Aug. 26	$3450 \cdot 6$	J. C. Pearson.
Monument No. $121 .$.	19 04	$\begin{array}{ll}141 & 00 \\ 141 & 00\end{array}$	1913 July 10	34 34 34	T. Riggs, jr.
	04	13926	1912 Sept. 25	3457	T. Riggs, jr.
	04	13926	1908 June 15	$3504 \cdot 0$	J. W. Green.
	04	13926	1907 Aug-Sept	$3502 \cdot 4$	J. C. Pearson.
	02	14101	1908	3410	A. I. Oliver.
	01	14104	1908	3445	"
	01	14058	1908	3435	"
	01	14058	1908	3405	"
	00	14103	1908	3405	"
	00	14058	1908	3445	"
	6400	14054	1908	3425	A. I. Oliver.
	6359	14103	1908	3435	A. I. "
	58	14103	1908	3400	"
	57	14104	1908	3435	"
	57	14104	1908	3405	"
	55	14100	1908	3340	"
	53	14100	1908	3330	"
	52	14103	1908	3330	"
	52	14102	1908	3255	"
	52	14059	1908	3310	"
	50	14102	1908	3310	"
	50	14101	1908	3245	"
	50	14102	1908	3300	"
	49	14102	1908	3330	"
	45	14101	1908	3300	"
	44	14102	1908	3450	"
	42	14057	1908	3420	"
	42	14058	1908	3315	"
Monument No. 136.	42	14100	$1910 \text { Aug. } 6$	3337	D. W. Eaton.
	41	14057	1908	3200	A. I. Oliver.
	40	14102	1908	3310	" ${ }^{\text {a }}$
	40	14100	1908	3350	"
Monument No. 137.	39	14100	1910 Aug. 2	3348	D. W. Eaton.
	39	14100	1908	3530	A. I. Oliver.
	39	14100	1908	3430	"
	39	14102	1908	3220	"
	38	14102	1908	3415	"
	38	14103	1908	3310	"
	38	14057	1908	3315	"
	38	14103	1908	3330	"

VALUES OF THE MAGNETIC DECLINATION, ETC.-Continued.

Station.	Latitude.	Longitude.	Date.	Declination, East.	Observer.
Monument No. 138.	-	${ }^{\circ} 1410^{\prime} 00$		$\begin{array}{cc} \hline \circ & \prime \\ 33 & 50 \end{array}$	D. W. Eaton. A. I. Oliver. 66
	37		1910 Aug. 1		
	36	14057	1908	3305 33	
	36	14058	1908	3320	
	- 36	14059	1908	3520	
Monument No. 139.	34	14100	1910 July 27	3329	
	34	14104	1908 d	3330	
Monument No. 140.	33	14100	July 23	3335	A. I. Oliver. D. W. Eaton.
	32	14104	1908	3120	A. I. Oliver.
	31 31	14058 14059	1908	34 3400 34	
Monument No. 141.	31	14100	1910 July 22	3332	D. W. Eaton. A. I. Oliver.
	30	14057	1908	3410	
Summit.	29	14108	1910 July 18	3322	
Monument No. 142.	28	14100	1910 July 16	3356	
Nonument No. 143.	25	14100	1910 July 14	3356	$\begin{aligned} & \text { " } \\ & \text { " } \end{aligned}$
Monument No. 144.	23	14100	1910 July 9	3307	
Monument No. 145.	22	13928	1887 Aug. 27	33 33	W. Ogilvie.
	21	14100	1910 July 6	3352	W. Ogilvie. D. W. Eaton.
Stewart............	18	13929	1907 Sept. 7	$3404 \cdot 4$	D. W. Eaton. J. C. Pearson.
Monument No. 146.	18	14100	June 29	3340	D. W. Eaton. A. I. Oliver.
	18	14100	1908	3310 3	
	18	14058	1908	3330	A. I. Oliver. "
	17	14056	1908	3300	
	16	14057	1908	3235	"
	16	14055	1908	3252	"
	6316	14104	1908	3450	A. I. Oliver. T. Riggs, jr. A. I. Oliver.
Monument No. 147.	16	14100	July 27	3356	
	16	14056	1908	33 32	
	12	14104	1908 - 6	3200	
White River..	12	13938	Aug. 26	34 32	W. Ogilvie. A. I. Oliver.
	12 11	$\begin{array}{lll}140 & 56 \\ 141 & 01\end{array}$	1908	3245 3230	
	07	14100	1909	3235	"
	07	14101	1909	3240	"
	07	14058	1909	3245	"
	06	14100	1909	3330	"
	06	14101	1909	3320	"
	06	14058	1909	3310	"
	05	14057	1909	3335	"
	05	14101	1909	3340	"
	05	14059	1909	3315	"
	05	14059	1909	3305	"
	04	14104	1909	3310	"
	04	14102	1909	3255	"
	04	14056	1909	3230	"
	6300	14056	1909	3315	"
	6258	14056	1909	3310	"
	57	14100	1909	3225	"
	57	14056	1909	3255	"
	57	14058	1909	3245	"
	57	14057	1909	3330	"
	56	14102	1909	3230	"
	56	14100	1909	3220	"
	55	14104	1909	3215	"
	55	14057	1909	3305	"
	55	14101	1909	3245	"
	54	14102	1909	3150	"
	54	14102	1909	3150	"
	54	14058	1909	3235	"
	53	14100	1909	3225	"
	53	14059	1909	3300	"
	53	14103	1909	3245	"
	53	14055	1909	3200	"

VALUES OF THE MAGNETIC DECLINATION, ETC.-Concluded.

Station.	Latitude.	Longitude.	Date.	Declinaation, East.	Observer.
	- ,	-		- ,	
	53	14056	1909	3200	A. I. Oliver.
	53	14058	1909	3230	
	46	14102	1909	3300	"
	45	14059	1909	3300	"
	44	14059	1909	3245	"
	44	14056	1909	3310	"
	42	14111	1909	3230	"
	39	14100	1909	3235	"
	39	14057	1909	3215	"
	39	14101	1909	3220	"
Monument No. 163.	35	14100	1913 Aug. 5	3251	
	34	14100	1909	3215	A. I. Oliver.
	33	14103	1909	3210	
	32	14100	1909	3225	T."
Monument No. 166.	28 28	14100 14100	1913 Aug. 7	3254 3255	
	62 28	14100 140 10	$\begin{aligned} & 1909 \\ & 1909 \end{aligned}$	3235 3240	W. C. Guerin.
	18	14100	1909	3230	"
	14	14100	1909	3258	"
	14	14104	1909	3220	"
	11	14100	1909	3235	"
	04	14100	1909	3530	"
	6203	14100	1909	3505	"
Monument No. 177.	6158	14100	1913 Aug. 15	3054	
	57 56	14100	1909	3510	W. C. Guerin.
	56	14100	1909	3235	
Rabbit. .	52	14058	1909	3200 30	
Kletsan.	44 38	14058 14100	1909	3015 3100	"
Monument No. 187.	37 59	14100	1913 Aug. 19	3133	T. Riggs, jr.
Yahtse, East Base.	5949	14108	1894 July	3030	J. E. McGrath.
Mount Hoorts.............	45 45	139 140 140	1892 Aug.	3051 3042	
Malaspina, Southwest Base.	44	14012	1894 June	3043	" ${ }^{\text {] }}$
Port Mulgrave......... .		13947	1892 Sept. 3	$2955 \cdot 8$	J. H. Turner.
Ocean Cape...	32 28	13952 14053	1892 Aug.-Sep.	3024 24	J. E. McGrath.
At sea....	28	14053	1778 May 7	2426	Capt. J. Cook.

INSPECTION OF FIELD WORK.

During the seasons of 1912 and 1913, there was carried out a thorough inspection of the work on the whole line from the Arctic Ocean to Mount Natazhat. This included the checking of the alignment of various monuments chosen at random, the comparison of parts of the topography as mapped, with the country itself, as to accuracy and character, the numbering of the monuments, and the completion of the tying-in of such monuments as were not sufficiently well connected with the main triangulation scheme. A critical inspection of each monument was also made as to verticality, size, and condition of base, distance between monuments, etc.

This inspection was made by the United States and Canadian Chiefs of Party, assisted on various sections by chiefs of sub-parties. In 1912 this was done as a subsidiary portion of the regular work of the survey, and it was practically all accomplished, as far as the section north of the Porcupine River was concerned, during the return trip from the Arctic Ocean to Rampart House. The party working south of the Porcupine

Inspection party's pack-train travelling up the bars of the upper White River.
that season made a trip from Rampart House along the line to the Yukon after their regular work, for the purpose of making the inspection of this section. In 1913 a special inspection party under the Canadian and United States Chiefs of Party covered the section between the Yukon River and Mount Natazhat, thus completing the field work on the Boundary.

All monuments checked for alignment were found to be on line, and the topography shown on the plane-table sheets was excellent, every detail being shown as far as the scale would permit, and the different topographical features of the terrain being well distinguished and emphasized.

CONCLUSION.

The field work, a great deal of which had to be done in portions of the country hitherto considered practically impassable, was completed under the direction of the original Commissioners, Mr. O. H. Tittmann for the United States and Dr. W. F. King for His Britannic Majesty, and constitutes a lasting tribute to their efficient administration and supervision. Practically all the maps had also been prepared under their direction, as sheets 1 to 32, inclusive, had already been signed by them before the resignation of Mr. Tittmann on April 15, 1915, and the death of Dr. King on April 21, 1916.

The work was completed under the direction of Mr. E. C. Barnard, appointed Commissioner for the United States, April 30, 1915, and Mr. J. J. McArthur, appointed Commissioner for His Britannic Majesty, January 6, 1917, by printing and signing the last six sheets, numbers 33 to 38, preparing and signing the report, and transmitting to their respective Governments, as provided in the Convention, the signed report and duplicate atlases of signed joint maps. The engraved copper plates, original drawings, field sheets, record books and negatives have been stored in a vault of the Engraving Division of the United States Geological Survey, Washington, D.C. subject to the order of the Secretary of State.
Mr. Thos. Riggs, jr., having resigned as Engineer to the United States Commissioner in May, 1914, the greater part of the work in connection with the preparation of this
report devolved upon Mr. J. D. Craig, D.L.S., who had been in complete charge of the field work under the British Commissioner, and the Commissioners desire to express here their appreciation of the efficient manner in which this arduous task has been accomplished.

In conclusion, the Commissioners, on behalf of the former Commissioners and themselves, wish to express also their appreciation of the conscientious and efficient services rendered by all engaged on the work, especially by the chiefs of the field parties, whose good judgment, energy, and efficiency brought about the completion of the work in record time and without a serious accident.

It is also most gratifying to record that the location of the International Boundary along the 141st Meridian, and the preparation of the maps and report have been accomplished in a spirit of hearty co-operation, and to state that the cordial relations that so long existed between the former Commissioners have been continued by their successors.

Attached hereto are appendices as follows:-
I. Early explorations and negotiations.
II. Later negotiations, and details of operations on the Boundary prior to the Convention of 1906.
III. Descriptions of triangulation stations, and sketches of the triangulation.
IV. Special equipment used on the work.
V. Ration Lists.
VI. Game.

E. C. BARNARD, United States Commissioner.

J. J. McARTHUR, His Britannic Majesty's Commissioner.

APPENDIX I.

EARLY EXPLORATIONS AND NEGOTIATIONS.

The 141st Meridian became, in part, the boundary between Alaska and the British possessions in North America by virtue of the Treaty of 1825, the full text of which is here given:-

Treaty Between Great Britain and Russia, Signed at St. Petersburgh, February 28/16, 1825.

-[Translation.]
Au Nom de la Très Sainte et Indivisible In the Name of the Most Holy and UndiTrinité.

Sa Majesté le Roi du Royaume Uni de la Grande Bretagne et de l'Irlande, et Sa Majesté l'Empereur de toutes les Russies, désirant resserrer les liens de bonne intelligence et d'amitié qui les unissent, au moyen d'un accord qui régleroit, d'après le principe des convenances réciproques, divers points relatifs au commerce, à la navigation, et aux pêcheries de leurs sujets sur l'Océan Pacifique, ainsi que les limites de leurs possessions respectives sur la côte nord-ouest de l'Amérique, ont nommé des Plénipotentiaires pour conclure une Convention à cet effet, savoir:-Sa Majesté le Roi du Royaume Uni de la Grande Bretagne et de l'Irlande, le Très Honorable Stratford Canning, Conseiller de Sa dite Majesté en Son Conseil Privé, etc. Et Sa Majesté l'Empereur de toutes les Russies, le Sieur Charles Robert Comte de Nesselrode, Son Conseiller Privé Actuel, Membre du Conseil de l'Empire, Secrétaire d'Etat dirigeant le Ministère des Affaires Etrangères, etc.; et le Sieur Pierre de Poletica, Son Conseiller d'Etat Actuel, etc. Lesquels Plénipotentiaires, après s'être communiqué leurs pleins-pouvoirs respectifs, trouvés en bonne et due forme, ont arrêté et signé les Articles suivans:

Art. I. Il est convenu que, dans aucune partie du grand Océan, appelé communément Océan Pacifique, les sujets respectifs des Hautes Puissances Contractantes ne seront ni troublés, ni gênés, soit dans la navigation, soit dans l'exploitation de la pêche, soit dans la faculté d'aborder aux côtes, sur des points qui ne seroient pas déjà occupés, afin d'y faire le commerce avec les indigènes, sauf toutefois les restrictions et conditions déterminés par les Articles qui suivent.
II. Dans la vue d'empêcher que les droits de navigation et de pêche exercés sur le grand océan
vided Trinity.

His Majesty the King of the United Kingdom of Great Britain and Ireland, and His Majesty the Emperor of all the Russias, being desirous of drawing still closer the ties of good understanding and friendship which unite them, by means of an agreement which may settle, upon the basis of reciprocal convenience, different points connected with the commerce, navigation, and fisheries of their subjects on the Pacific Ocean as well as the limits of their respective possessions on the northwest coast of America, have named Plenipotentiaries to conclude a Convention for this purpose, that is to say:-His Majesty the King of the United Kingdom of Great Britain and Ireland, the Right Honourable Stratford Canning, a member of His said Majesty's Most Honourable Privy Council, etc., and His Majesty the Emperor of all the Russias, the Sieur Charles Robert Count de Nesselrode, His Imperial Majesty's Privy Councillor, a member of the Council of the Empire, Secretary of State for the Department of Foreign Affairs, etc., and the Sieur Pierre de Poletica, His Imperial Majesty's Councillor of State, etc. Who, after having communicated to each other their respective full powers, found in good and due form, have agreed upon and signed the following Articles:
Art. I. It is agreed that the respective subjects of the High Contracting Parties shall not be troubled or molested, in any part of the Ocean, commonly called the Pacific Ocean, either in navigating the same, in fishing therein, or in landing at such parts of the coast as shall not have been already occupied, in order to trade with the natives, under the restrictions and conditions specified in the following Articles.
II. In order to prevent the right of navigating and fishing, exercised upon the ocean by the
par les sujets des Hautes Parties Contractantes ne deviennent le prétexte d'un commerce illicite, il est convenu que les sujets de Sa Majesté Britannique n'aborderont à aucun point où il se trouve un établissement Russe, sans la permission du Gouverneur ou Commandant; et que, réciproquement, les sujets Russes ne pourront aborder, sans permission, à aucun établissement Britannique, sur la côte nord-ouest.
III. La ligne de démarcation entre les possessions des Hautes Parties Contractantes sur la côte du continent et les îles de l'Amérique nordouest, sera tracée ainsi qu'il suit:

A partir du point le plus méridional de l'île dite Prince of Wales, lequel point se trouve sous la parallèle du 54° degré 40 minutes de latitude nord, et entre le 131° et le 133^{e} degré de longitude ouest (méridien de Greenwich), la dite ligne remontera au nord le long de la passe dite Portland Channel, jusqu'au point de la terre ferme où elle atteint le 56° degré de latitude nord: de ce dernier point la ligne de démarcation suivra la crête des montagnes situées parallèlement à la côte, jusqu'au point d'intersection du 141^{1} degré de longitude ouest (même méridien); et finalement, du dit point d'intersection, la même ligne méridienne du $141^{\text {e }}$ degré formera, dans son prolongement jusqu'à la Mer Glaciale, la limite entre les possessions Russes et Britanniques sur le continent de l'Amérique nord-ouest.
IV. Il est entendu, par rapport à la ligne de démarcation déterminée dans l'Article précédent:

1. Que l'île dite Prince of Wales appartiendra toute entière à la Russie.
2. Que partout où la crête des montagnes qui s'étendent dans une direction parallèle à la côte depuis le 56° degré de latitude nord au point d'intersection du 141° degré de longitude ouest, se trouveroit à la distance de plus de 10 lieues marines de l'océan, la limite entre les possessions Britanniques et la lisière de côte mentionnée ci-dessus comme devant appartenir à la Russie, sera formée par une ligne parallèle aux sinuosités de la côte, et qui ne pourra jamais en être éloignée que de 10 lieues marines.
V. Il est convenu en outre, que nul établissement ne sera formé par l'une des deux Parties dans les limites que les deux Articles précédents assignent aux possessions de l'autre. En conséquence, les sujets Britanniques ne formeront aucun établissement, soit sur la côte, soit sur la lisière de terre ferme comprise dans les limites des possessions Russes, telles qu'elles sont désignées dans les 2 Articles précédens; et, de même, nul établissement ne sera formé par des sujets Russes au delà des dites limites.
subjects of the High Contracting Parties, from becoming the pretext for an illicit commerce, it is agreed that the subjects of His Britannic Majesty shall not land at any place where there may be a Russian establishment, without the permission of the Governor or Commandant; and, on the other hand, that Russian subjects shall not land, without permission, at any British establishment, on the north-west coast.
III. The line of demarcation between the possessions of the High Contracting Parties, upon the coast of the continent, and the islands of America to the north-west, shall be drawn in the manner following:

Commencing from the southernmost point of the island called Prince of Wales Island, which point lies in the parallel of 54 degrees 40 minutes, north latitude, and between the 131st and 133rd degree of west longitude (meridian of Greenwich), the said line shall ascend to the north along the channel called Portland Channel, as far as the point of the continent where it strikes the 56th degree of north latitude; from this last mentioned point, the line of demarcation shall follow the summit of the mountains situated parallel to the coast as far as the point of intersection of the 141st degree of west longitude (of the same meridian); and, finally, from the said point of intersection, the said meridian line of the 141st degree, in its prolongation as far as the Frozen Ocean, shall form the limit between the Russian and British possessions on the continent of America to the north-west.
IV. With reference to the line of demarcation laid down in the preceding Article it is understood:

1st. That the island called Prince of Wales Island shall belong wholly to Russia.

2nd. That whenever the summit of the mountains which extend in a direction parallel to the coast, from the 56th degree of north latitude to the point of intersection of the 141st degree of west longitude, shall prove to be at the distance of more than 10 marine leagues from the ocean, the limit between the British possessions and the line of coast which is to belong to Russia, as above mentioned, shall be formed by a line parallel to the windings of the coast, and which shall never exceed the distance of 10 marine leagues therefrom.
V. It is moreover agreed, that no establishment shall be formed by either of the two parties within the limits assigned by the two preceding Articles to the possessions of the other; consequently, British subjects shall not form any establishment either upon the coast, or upon the border of the continent comprised within the limits of the Russian possessions, as designated in the two preceding Articles; and, in like manner, no establishment shall be formed by Russian subjects beyond the said limits.
VI. Il est entendu que les sujets de Sa Majesté Britannique, de quelque côté qu'ils arrivent, soit de l'océan, soit de l'intérieur du continent, jouiront à perpétuité du droit de naviguer librement, et sans entrave quelconque, sur tous les fleuves et rivières qui, dans leurs cours vers la mer Pacifique, traverseront la ligne de démarcation sur la lisière de la côte indiquée dans l'Article III de la présente Convention.
VII. Il est aussi entendu que, pendant l'espace de 10 ans, à dater de la signature de cette Convention, les vaisseaux des deux Puissances, ou ceux appartenant à leurs sujets respectifs, pourront réciproquement fréquenter, sans entrave quelconque, toutes les mers intérieures, les golfes, havres, et criques sur la côte mentionnée dans l'Article III, afin d'y faire la pêche et le commerce avec les indigènes.
VIII. Le Port de Sitka, ou Novo Archangelsk, sera ouvert au commerce et aux vaisseaux des sujets Britanniques durant l'espace de 10 ans, à dater de l'échange des ratifications de cette Convention. Au cas qu'une prolongation de ce terme de 10 ans soit accordée à quelque autre Puissance, la même prolongation sera également accordée à la Grande Bretagne.
IX. La susdite liberté de commerce ne s'appliquera point au trafic des liqueurs spiritueuses, des armes à feu, des armes blanches, de la poudre à canon, ou d'autres munitions de guerre; Les Hautes Parties Contractantes s'engageant réciproquement à ne laisser ni vendre, ni livrer, de quelque manière que ce puisse être, aux indigènes du pays les articles ci-dessus mentionnés.
X. Tout vaisseau Britannique ou Russe naviguant sur l'Océan Pacifique, qui sera forcé par des tempêtes, ou par quelque accident, de se réfugier dans les ports des parties respectives, aura la liberté de s'y radouber, de s'y pourvoir de tous les objets qui lui seront nécessaires, et de se remettre en mer, sans payer d'autres droits que ceux de port et de fanaux, lesquels seront, pour lui, les mêmes que pour les bâtimens nationaux. Si , cependant, le patron d'un tel navire se trouvoit dans la nécessité de se défaire d'une partie de ses marchandises pour subvenir à ses dépenses, il sera tenu de se conformer aux ordonnances et aux tarifs de l'endroit où il aura abordé.
XI. Dans tous les cas de plaintes relatives à l'infraction des Articles de la présente Convention, les autorités civiles et militaires des deux Hautes Parties Contractantes, sans se permettre au préalable ni voie de fait, ni mesure de force, seront tenues de faire un rapport exact de l'affaire et de ses circonstances à leurs Cours respectives, lesquelles s'engagent à la régler à l'amiable, et d'après les principes d'une parfaite justice.
XII. La présente Convention sera ratifiée, et les ratifications en seront échangées à Londres
VI. It is understood that the subjects of His Britannic Majesty, from whatever quarter they may arrive, whether from the ocean, or from the interior of the continent, shall forever enjoy the right of navigating freely, and without any hindrance whatever, all the rivers and streams which, in their course towards the Pacific Ocean, may cross the line of demarcation upon the line of coast described in Article III of the present Convention.
VII. It is also understood, that, for the space of ten years from the signature of the present Convention, the vessels of the two Powers, or those belonging to their respective subjects, shall mutually be at liberty to frequent, without any hindrance whatever, all the inland seas, the gulfs, havens, and creeks on the coast mentioned in Article III for the purposes of fishing and of trading with the natives.
VIII. The port of Sitka, or Novo Archangelsk, shall be open to the commerce and vessels of British subjects for the space of ten years from the date of the exchange of the ratifications of the present Convention. In the event of an extension of this term of ten years being granted to any other Power, the like extension shall be granted also to Great Britain.
IX. The above-mentioned liberty of commerce shall not apply to the trade in spirituous liquors, in fire-arms, or other arms, gunpowder, or other warlike stores; the High Contracting Parties reciprocally engaging not to permit the abovementioned articles to be sold or delivered, in any manner whatever, to the natives of the country.
X. Every British or Russia vessel navigating the Pacific Ocean, which may be compelled by storms or by accident, to take shelter in the ports of the respective Parties, shall be at liberty to refit therein, to provide itself with all necessary stores, and to put to sea again, without paying any other than port and light-house dues, which shall be the same as those paid by national vessels. In case, however, the master of such vessel should be under the necessity of disposing of a part of his merchandise in order to defray his expenses, he shall conform himself to the regulations and tariffs of the place where he may have landed.
XI. In every case of complaint on account of an infraction of the Articles of the present Convention, the civil and military authorities of the High Contracting Parties, without previously acting or taking any forcible measure, shall make an exact and circumstantial report of the matter to their respective Courts, who engage to settle the same, in a friendly manner, and according to the principles of justice.
XII. The present Convention shall be ratified, and the ratifications shall be exchanged at
dans l'espace de 6 semaines, ou plutôt si faire se peut.

En foi de quoi les Plénipotentiares respectifs l'ont signé, et y ont apposé le cachet de leurs armes.

Fait à St. Pétersbourg, le 28/16 Février, de l'an de Grâce 1825 .
(L.S.) STRATFORD CANNING.
(L.S.) Le compte de NESSELRODE.
(L.S.) PIERRE de POLETICA.

London within the space of six weeks, or sooner if possible.
In witness whereof, the respective Plenipotentiaries have signed the same, and have affixed thereto the seal of their arms.
Done at St. Petersburgh, the 28/16th day of February, in the year of Our Lord, 1825.
[L.S.] STRATFORD CANNING.
[L.S.] COMTE de NESSELRODE.
[L.S.] PIERRE DE POLETICA.
(Hertslet's Commercial and Slave Trade Treaties, vol. III, p. 362.)

The diplomatic exchanges following the Russian Ukase of 1821^{1} shortly developed the fact that there was an immediate necessity for defining the boundaries of the Russian possessions in northwest America, and for settling the question of the extent of Russia's maritime jurisdiction in the waters adjoining the coast, this latter point particularly being the cause of an immediate protest on the part of the Governments of the United States and Great Britain against the validity of Russia's authority to issue such a sweeping decree.

From 1741^{2} when Bering ${ }^{3}$ and Chirikof first sighted the Alaskan coast until the investment of full authority in the Russian American Company in 1799, the history of Alaska shows a series of struggles between the Russians and the natives, with the former gradually tightening their hold on the country and reducing the natives almost to a state of slavery. The fame of the richness of the fur harvest in the new country attracted the attention of the traders of other nations, and Spain, England, France, and the United States all sent expeditions to attempt to secure for themselves a share of the riches, Russia, however, retaining the supremacy.

The first Russian settlements ${ }^{2}$ had been established on Kodiak Island in 1784. All thought up to this time had been of discovery, exploration, and hunting the fur-bearing animals. By 1786 other settlements had been established, they had all been fortified, and everything possible had been done to impress upon the natives the power and greatness of Russia. Various Russian trading companies were formed whose sole aim was to accumulate vast quantities of fur, and it is to be noted that the Russian Government had little to do with the settlements, and that they were solely under the direction of, and depended upon the support of, the different companies. Finally in August, 1799, the trading privileges of the country were handed over by Imperial Ukase for a period of twenty years to the Russian American Company. From this date the history of Alaska is practically the history of this great monopoly.

When the privileges of the company were renewed by the Ukase of 1821, more stringent regulations were laid down to protect the company's interests, and all foreign vessels were prohibited from trading on the coast, and it was this sweeping assumption of maritime authority by the Russian Government that brought forth the immediate protests of the Governments of Great Britain and the United States. The Treaty of

[^59]1824 settled the matter as far as the States were concerned, but the negotiations with Great Britain were not concluded until the following year, when the Treaty was signed which made the 141st Meridian, or rather that part of it lying between Mount St. Elias and the Arctic Ocean, the eastern boundary of the more northerly portion of the Russian possessions.

Throughout all these negotiations, the land boundary, important though it was, was really subordinated to the question of the extent of Russia's maritime jurisdiction. Mr. W. H. Dall of the United States Coast and Geodetic Survey says in a " Memorandum on the Alaska Boundary" in 1888:1 " It is also necessary to remember that at that period, (1825) and for many years later, the region in question was regarded by all the civilized world as a horrid wilderness, peopled by blood-thirsty savages, in itself valueless, and of importance only through its relation to the amour propre of the nations concerned and the daring voyages of a few adventurous fur traders. Considered as territory, a few miles more or less, in one direction or the other, would have been regarded as of absolutely no importance by either nation."

We also find in " The Life of the Right Hon. Stratford Canning " by Colonel LanePole, ${ }^{2}$ the following reference to these negotiations: " The object of this instrument (the Treaty of 1825) was a good deal more than a mere question of boundary, though the latter was made to cover and mask the larger design."

It is worthy of record that the Treaty of 1824 between Russia and the United States gave to the latter trading privileges along the coast of Russian America, and moreover swept away for all time the Russian contention that the Tzar owned not only the land but could prohibit foreign vessels from approaching the coast.

It is interesting to note that the Russian Government was guided in its negotiations largely by the representations of the Russian American Company, just as was the British Government by those of the Hudson's Bay Company.

The Russian Company, according to M. Poletica, Active-Councillor of State, would have been satisfied with the adoption of such a degree of longitude as would have left the Mackenzie River outside of their territory, ${ }^{3}$ and at the first informal meeting between the representatives of the two countries in St. Petersburgh in 1823, the intersection of the 57 th degree of north latitude and the 135 th meridian of west longitude was unofficially suggested by Sir Charles Bagot, acting for Great Britain, as roughly indicating the southerly limit of Russia's possessions on the coast. He was later instructed ${ }^{4}$ to attempt to obtain Chatham Strait or Stephens Passage as the boundary on the coast, or, failing to obtain these, to insist upon the adoption of the 135 th meridian northward from the head of Lynn Canal as the separating line, though the Hudson's Bay Company would apparently have been satisfied with a line due north from the summit of the mountains, which they considered a continuation of the Rockies, and thence along the summit northwesterly to the Frozen Ocean. ${ }^{5}$

As a reply to the Russian proposal that the 55 th degree of north latitude should be the dividing line, the British representative on February 16, 1824, proposed as the boundary, a line " through Chatham Straits to the head of Lynn Canal, thence

[^60]northwest to the 140th degree of longitude west of Greenwich, and thence along that degree to the Polar Sea." ${ }^{1}$

As a contre projet the Russians proposed a line following the Portland Canal as far as the mountains which run along the coast, thence along these mountains parallel to the sinuosities of the coast as far as the 139th degree of longitude (meridian of London), and thence north along the meridian. ${ }^{2}$

The discussions were chiefly concerned with the location of the more southerly portion of the boundary, but Sir Charles Bagot insisted on a line running north from Mount St. Elias, or at least the 140th meridian, being taken as the dividing line between the more northerly possessions of the two countries. ${ }^{3}$

This proposition was rejected by the Russians on March 29, 1824, and negotiations were temporarily suspended, but later, principally upon the recommendations of the Hudson's Bay Company, to whom the matter was again referred, the British Ambassador at St. Petersburgh was advised that he might accede materially to Russia's wishes in the matter of the territorial boundary. He was empowered to allow Russia's claim that the southern portion of the boundary should follow the summit of the mountains nearest the sea, and that the 139th degree of west longitude should form the boundary between the respective inland possessions. ${ }^{4}$ Again, however, negotiations were suddenly suspended in August, 1824, on account of Russia's insistence in her claims of maritime jurisdiction.

In December of that year, Mr. Stratford Canning was sent to the Russian court to take up the negotiations again, and in his instructions we find the following clause with reference to the northern portion of the boundary: " I omitted in my last instructions to Sir Charles Bagot (though I had signified to Count Lieven) that I intended to require a small extension of the line of demarcation from the point where the lisière on the coast terminates in latitude 50 degrees to the northward. The extension required is from 138 degrees to 141 degrees west longitude, the latter being the parallel which falls more directly on Mount St. Elias." ${ }^{5}$ This selection of a more westerly degree of longitude was foreshadowed in a message dated 29th May, 1824, from the Right Hon. George Canning, the British Secretary of Foreign Affairs, to Count Lieven, Russian Ambassador to England, when he wrote: " The qualifications will consist . . . in the selection of a somewhat more western degree of longitude as the boundary to the northward of Mount St. Elias.' ${ }^{6}$

It is noticed, however, that the draft Convention embodied in Mr. Stratford Canning's final instructions mentions the 140th degree of longitude and not the $141 \mathrm{st},{ }^{7}$ and it is in the contre projet submitted by Mr. Canning in February, 1825, that we first find the 141st meridian officially mentioned as the possible boundary. ${ }^{8}$ This contre projet was modified by the Russians in some respects, but they allowed the clause with reference to the 141st meridian to remain unchanged and the Convention was signed February 28/16, 1825, the ratifications being exchanged about two weeks later. The wording of Article III which has reference to the boundary is as follows:-

[^61]from the said point of intersection, the said meridian line of the 141 st degree, in its prolongation as far as the Frozen Ocean, shall form the limit between the Russian and British possessions on the continent of America to the north-west.

The insistence of Russia's demands that the southeastern portion of the boundary should be a line roughly paralleling the coast at some distance inland, no doubt accounts to a large extent for the gradual change on the part of the British diplomats from a probable asquiescence in the choice of the 135th meridian as the northerly portion of the boundary, to what practically amounted to a demand that the 141st meridian be selected.

When Alaska was ceded to the United States by Russia in 1867, the description of the boundaries of the Russian possessions was taken practically direct from the Treaty of 1825 between Great Britain and Russia. This description is contained in Article I of the Treaty of 1867 , the full text of which reads as follows:-

Treaty Concerning the Cession of the Russian Possessions in North America by His Majesty the Emperor of all the Russias to the United States of America.

(Concluded March 30, 1867. Ratified by the United States May 28, 1867. Exchanged June 20, 1867. Proclaimed by the United States, June 20, 1867.)

[Translation.]

Sa Majesté l'Empereur de toutes les Russies et les Etats-Unis d'Amérique, désirant raffermir, s'il est possible, la bonne intelligence qui existe entre eux, ont nommé, à cet effet, pour leurs Plénipotentiaires, savoir: Sa Majesté l'Empereur de toutes les Russies, le Conseiller Privé Edouard de Stoeckl, son envoyé extraordinaire et ministre plénipotentiaire aux Etats-Unis; et le Président des Etats-Unis, le Sieur William H. Seward, Secrétaire d'Etat, lesquels, après avoir échangé leurs pleins-pouvoirs, trouvés en bonne et due forme, ont arrêté et signé les articles suivants:

Article I.

Sa Majesté l'Empereur de toutes les Russies s'engage, par cette convention, à céder aux Etats-Unis, immédiatement après l'échange des ratifications, tout le Territoire avec droit de souveraineté actuellement possédé par Sa Majesté sur le continent d'Amérique ainsi que les îles contiguës, le dit Territoire étant compris dans les limites géographiques ci-dessous indiquées, savoir: la limite orientale est la ligne de démarcation entre les possessions Russes et Britanniques dans l'Amérique du Nord. ainsi qu'elle est établie par la convention, conclue entre la Russie et la Grande-Bretagne, le 16/28 Février, 1825, et définie dans les termes suivants des Articles III et IV de la dite convention.

The United States of America and His Majesty the Emperor of all the Russias, being desirous of strengthening, if possible, the good understanding which exists between them, have, for that purpose, appointed as their Plenipotentiaries: The President of the United States, William H. Seward, Secretary of State; and His Majesty the Emperor of all the Russias, the Privy Councillor, Edward de Stoeckl, his Envoy Extraordinary and Minister Plenipotentiary to the United States.

And the said Plenipotentiaries, having exchanged their full powers, which were found to be in due form, have agreed upon and signed the following articles:-

Article I.

His Majesty the Emperor of all the Russias agrees to cede to the United States, by this convention, immediately upon the exchange of the ratifications thereof, all the territory and dominion now possessed by his said Majesty on the continent of America and in the adjacent islands, the same being contained within the geographical limits herein set forth, to wit: The eastern limit is the line of demarcation between the Russian and the British possessions in North America, as established by the Convention between Russia and Great Britain, in February 28-16, 1825, and described in Articles III and IV of said Convention, in the following terms:-
" A partir du point le plus méridional de l'Ile dite Prince of Wales, lequel point se trouve sous la parallèle du 54 me degré 40 minutes de latitude nord, et entre le 131me et le 133me degré de longitude ouest (méridien de Greenwich) la dite ligne remontera, au nord le long de la passe dite Portland Channel, jusqu'au point de la terre ferme, où elle atteint le 56 me degré de latitude nord; de ce dernier point la ligne de démarcation suivra la crête des montagnes situées parallèlement à la côte jusqu'au point d'intersection du 141me degré de longitude ouest (même méridien), et finalement, du dit point d'intersection la même ligne méridienne du 141 me degré formera, dans son prolongement jusqu'à la mer Glaciale, la limite entre les possessions Russes et Britanniques sur le continent de l'Amérique nord-ouest.
" IV. Il est entendu, par rapport à la ligne de démarcation déterminée dans l'article précédent:
" 1° Que l'Ile dite Prince of Wales, appartiendra toute entière à la Russie;" (mais dès ce jour en vertu de cette cession aux Etats-Unis).
" 2° Que partout où la crête des montagnes qui s'étendent dans une direction parallèle à la côte, depuis le 56 me degré de latitude nord au point d'intersection du 141 me degré de longitude ouest se trouverait à la distance de plus de dix lieues marines de l'océan la limite entre les possessions Britanniques et la lisière de côte mentionnée ci-dessus comme devant appartenir à la Russie " c'est-à-dire la limite des possessions cedées par cette Convention: "sera formée par une ligne parallèle aux sinuosités de la côte et qui ne pourra jamais en être éloignée que de dix lieues marines."

La limite occidentale des territoires cédés passe par un point au détroit de Behring sous la parallèle du soixante-cinquième degré trente minutes de latitude Nord à son intersection par le méridien qui sépare à distance égale les Iles Krusenstern ou Ignalook et l'Ile Ratmonoff ou Noonarbook et remonte en ligne directe, sans limitation, vers le Nord jusqu'à ce qu'elle se perde dans la mer Glaciale. Commençant au même point de départ, cette limite occidentale suit de là un cours presque Sud-ouest, à travers le détroit de Behring et la mer de Behring, de manière à passer à distance égale entre le point Nord-ouest de l'île Saint-Laurent et le point Sud-est du cap Choukotski jusqu'au méridien cent soixantedouzième de longitude Ouest; de ce point, à partir de l'intersection de ce méridien, cette limite suit une direction Sud-ouest de manière à passer à distance égale entre l'île d'Attou et l'île Copper du groupe d'îlots Kormandorski dans l'océan Pacifique Septentrional jusqu'au méridien de cent quatre-vingt treize degrés de longitude

[^62]" Commencing from the southernmost point of the Island called Prince of Wales Island, which point lies in the parallel of 54 degrees 40 minutes north latitude, and between the 131st and the 133rd degree of west longitude (meridian of Greenwich), the said line shall ascend to the north along the channel called Portland Channel, as far as the point of the continent where it strikes the 56th degree of north latitude; from this last-mentioned point the line of demarcation shall follow the summit of the mountains situated parallel to the coast as far as the point of intersection of the 141st degree of west longitude, (of the same meridian); and finally, from the said point of intersection, the said meridian line of the 141st degree, in its prolongation as far as the Frozen Ocean.
" IV. With reference to the line of demarcation laid down in the preceding Article, it is under-stood-
" 1st.-That the island called Prince of Wales Island shall belong wholly to Russia," (now, by this cession, to the United States).
" 2nd.-That whenever the summit of the mountains which extend in a direction parallel to the coast from the 56th degree of north latitude to the point of intersection of the 141st degree of west longitude shall prove to be at the distance of more than ten marine leagues from the ocean, the limit between the British possessions and the line of coast which is to belong to Russia as above mentioned (that is to say, the limit to the possessions ceded by this Convention) shall be formed by a line parallei to the windings of the coast, and which shall never exceed the distance of ten marine leagues therefrom."

The western limit within which the territories and dominion conveyed, are contained, passes through a point in Behring's Straits on the parallel of sixty-five degrees thirty minutes north latitude, at its intersection by the meridian which passes midway between the islands of Krusenstern, or Ignalook, and the island of Ratmanoff, or Noonarbook, and proceeds due north, without limitation, into the same Frozen Ocean. The same western limit, beginning at the same initial point, proceeds thence in a course nearly southwest, through Behring's Straits and Behring's Sea, so as to pass midway between the north-west point of the island of St. Lawrence and the south-east point of Cape Choukotski, to the meridian of one hundred and seventy-two west longtitude; thence, from the intersection of that meridian, in a south-westerly direction, so as to pass midway between the island of Attou and the Copper Island of the Komandorski couplet or group in the North Pacific Ocean, to the meridian of one hundred and ninety-three degrees west

Ouest, de manière à enclaver, dans le Territoire cédé toutes les îles Aléoutes situées à l'est de ce méridien.

Article II.

Dans le Territoire cédé par l'article précédent à la Souveraineté des Etats-Unis sont compris le droit de propriété sur tous les terrains et places publics, terres inoccupées, toutes les constructions publiques, fortifications, casernes et autres édifices qui ne sont pas propriété privée individuelle. Il est toutefois entendu et convenu que les églises construites par le Gouvernement Russe sur le Territoire cédé, resteront la propriété des membres de l'Eglise Grecque Orientale résidant dans ce Territoire et appartenant à ce culte. Tous les archives, papiers, et documents du Gouvernement ayant trait au susdit Territoire, et qui y sont maintenant déposés seront placés entre les mains de l'agent des Etats-Unis; mais les Etats-Unis fourniront toujours quand il y aura lieu des copies légalisées de ces documents au Gouvernement Russe, aux officiers ou sujets Russes qui pourront en faire la demande.

Article III.

Il est réservé aux habitans du territoire cédé le choix de garder leur nationalité et de rentrer en Russie dans l'espace de trois ans; mais s'ils préfèrent rester dans le territoire cédé ils seront admis, à l'exception toutefois des tribus sauvages à jouir de tous les droits, avantages et immunités des citoyens des Etats-Unis et ils seront maintenus et protégés dans le plein exercice de leur liberté, droit de propriété et religion. Les tribus sauvages seront assujéties aux lois et règlements que les Etats-Unis pourront adopter de temps en temps à l'égard des tribus aborigènes de ce pays.

Article IV.

Sa Majesté l'Empereur de toutes les Russies nommera, aussitôt que possible un agent ou des agents chargés de remettre formellement à l'agent ou aux agents nommés par les Etats-Unis, le territoire, la souveraineté, les propriétés, dépendances, et appartenances ainsi cédés et de dresser tout autre acte qui sera nécessaire à l'accomplissement de cette transaction. Mais la cession, avec le droit de possession immédiate, doit toutefois être considérée complète et absolue à l'échange des ratifications sans attendre la remise formelle.
longitude, so as to include in the territory conveyed the whole of the Aleutian Islands east of that meridian.

Article II.

In the cession of the territory and dominion made by the preceding article, are included the right of property in all public lots and squares, vacant lands, and all public buildings, fortifications, barracks, and other edifices which are not private individual property. It is, however, understood and agreed that the churches which have been built in the ceded territory by the Russian Government, shall remain the property of such members of the Greek Oriental Church resident in the territory, as may choose to worship therein. Any Government archives, papers, and documents relative to the territory and dominion aforesaid, which may now be existing there, will be left in the possessoin of the agent of the United States; but an authenticated copy of such of them as may be required, will be, at all times, given by the United States to the Russian Government, or to such Russian officers or subjects, as they may apply for.

Article III.

The inhabitants of the ceded territory, according to their choice, reserving their natural allegiance may return to Russia within three years; but if they should prefer to remain in the ceded territory, they, with the exception of uncivilized native tribes, shall be admitted to the enjoyment of all the rights, advantages, and immunities of citizens of the United States, and shall be maintained and protected in the free enjoyment of their liberty, property, and religion. The uncivilized tribes will be subject to such laws and regulations as the United States may from time to time adopt in regard to aboriginal tribes of that country.

Article IV.

His Majesty the Emperor of all the Russias shall appoint, with convenient dispatch, an agent or agents for the purpose of formally delivering to a similar agent or agents appointed on behalf of the United States, the territory, dominion, property, dependencies and appurtenances which are ceded as above, and for doing any other act which may be necessary in regard thereto. But the cession, with the right of immediate possession, is nevertheless to be deemed complete and absolute on the exchange of ratifications, without waiting for such formal delivery.

Article V.

Immédiatement après l'échange des ratifications de cette convention, les fortifications et les postes militaires qui se trouveront sur le territoire cédé seront remis à l'agent des Etats-Unis et les troupes Russes qui sont stationnées dans le dit Territoire, seront retirées dans un terme praticable et qui puisse convenir aux deux parties.

Article VI

En considération de la susdite cession les Etats-Unis s'engagent à payer à la Trésorerie à Washington, dans le terme de dix mois après l'échange des ratifications de cette convention, sept millions deux cent mille de dollars en or, au Représentant diplomatique ou tout autre agent de Sa Majesté l'Empereur de toutes les Russies dûment autorisé à recevoir cette somme. La cession du territoire avec droit de souveraineté faite par cette convention, est déclarée libre et dégagée de toutes réservations, privilèges, franchises ou des possessions par des compagnies Russes ou tout autre légalement constitués ou autrement ou par des associations sauf simplement les propriétaires possédant des biens privés individuels et la cession ainsi faite transfère tous les droits, franchises et privilèges appartenant actuellement à la Russie dans le dit Territoire et ses dépendances.

Article VII.

Lorsque cette convention aura été dûment ratifiée par Sa Majesté l'Empereur de toutes les Russies d'une part et par le Président des EtatsUnis avec l'avis et le consentement du Sénat de l'autre, les ratifications en seront échangées à Washington dans le terme de trois mois, à compter du jour de la signature, ou plus tôt si faire se peut.

En foi de quoi les Plénipotentiaires respectifs ont signé cette convention et y ont apposé le sceau de leurs armes.

Fait à Washington le 18-30 jour de mars de l'an de Notre-Seigneur mil huit cent soixantesept.

$$
\begin{array}{ll}
\text { [L.S.] } & \text { EDOUARD DE STOECKL. } \\
\text { [L.S.] } & \text { WILLIAM H. SEWARD. }
\end{array}
$$

Article V.

Immediately after the exchange of the ratifications of this Convention, any fortifications or military posts which may be in the ceded territory, shall be delivered to the agent of the United States, and any Russian troops which may be in the territory, shall be withdrawn as soon as may be reasonably and conveniently practicable.

Article VI.

In consideration of the cession aforesaid, the United States agree to pay at the Treasury at Washington, within ten months after the exchange of the ratifications of this Convention, to the diplomatic representative or other agent of His Majesty the Emperor of all the Russias, duly authorized to receive the same, seven million two hundred thousand dollars in gold. The cession of territory and dominion herein made is hereby declared to be free and unincumbered by any reservations, privileges, franchises, grants, or possessions, by any associated companies, whether corporate or incorporate, Russian or any other, or by any parties except merely private individual property holders; and the cession hereby made conveys all the rights, franchises, and privileges now belonging to Russia in the said territory or dominion, and appurtenances thereto.

Article VII.

When this Convention shall have been duly ratified by the President of the United States, by and with the advice and consent of the Senate, on the one part, and on the other by His Majesty the Emperor of all the Russias, the ratifications shall be exchanged at Washington within three months from the date hereof, or sooner, if possible.

In faith whereof, the respective Plenipotentiaries have signed this Convention, and thereto affixed the seals of their arms.

Done at Washington, this thirtieth day of March, in the year of our Lord one thousand eight hundred and sixty-seven.
[L.S.] WILLIAM H. SEWARD.
[L.S.] EDOUARD de STOECKL.

Various Exploratory Expeditions.

That portion of the 141st Meridian agreed upon as part of the boundary between the possessions of the two Governments, lay in what was in 1825 practically unknown and unexplored territory.

In 1829, Chistiakof, Governor of the Russian American Company, had ordered an inland exploration north of the Nushagat River, ${ }^{1}$ and it was on this expedition that the Russians met, on the Kuskokwim, with natives of the lower Yukon, who told them of the easy crossing from one river basin to the other. Under Baron Wrangell, Chistiakof's successor, explorations were carried on, on even a larger scale, among other points visited being St. Michael's near the mouth of the Yukon, then known as the Kwikpak, where a settlement was founded.

Glazonof, under Wrangell's instructions, did a vast amount of exploratory work around the delta of the Yukon in 1833 and 1834. In 1838, after Wrangell had been relieved from office, Malakhof ascended the Yukon as far as the present site of Nulato, where he built a small blockhouse. In 1842, Lieut. Zagoskin of the Imperial Navy made important explorations on the Kuskokwin, lower Yukon and Koyukuk. He explored the Yukon as far as the mouth of the Tanana, explored a few miles of the lower Koyukuk, and ascended the Innoko and crossed to the Kuskokwin, which he followed down to the Kuskokwim-Yukon portage.

The trading post of Nulato was founded in 1842, and became the most inland as well as the most northern of the Russian American Company's Posts. ${ }^{2}$

No further explorations of any account appear to have been made into the interior from the westward until 1865, except perhaps the work done by two parties in 1843 on the Sushitna and Copper Rivers for the purpose of extending trade with the natives. It is probable also that a few hardy adventurers had made trips farther up the great river which they knew as the Kwikpak.

Meanwhile, to the east of the 141st Meridian the Hudson's Bay Company was gradually extending its operations and establishing posts in the then wilderness.

The early knowledge of the geography of this northern region up to about 1887 was due almost entirely to the expeditions carried out by the officers of this company in connection with their various establishments, and it seems impossible to refer to the early history of the country without making some mention of their work.

As early as 1789, Mackenzie, in the service of the Company, had descended the great river which bears his name, and had reached the shores of the Arctic Ocean. Sir John Franklin in 1826 descended the Mackenzie River and traced the North American Coast as far as $149^{\circ} 37^{\prime}$ west longitude, the next visitors on the coast being Dease and Simpson of the Hudson's Bay Company's service who, in 1837, made practically the same trip, and were successful in getting as far west as Point Barrow.

The exploration of the Liard and upper Yukon is almost entirely due to the energy of Robert Campbell. ${ }^{3}$ As early as 1840 he crossed over from the Liard to the Pelly, but it was not until 1843 that he got as far as the junction of the Pelly and the Lewes, where the Indians told such tales of the ferociousness of the natives farther downstream that he could not induce his men to go farther, and was forced to return to the post at Pelly Banks. In 1848, however, he established Fort Selkirk on the point of

[^63]land betwen the two rivers, but on account of the spring floods it was moved in 1852 to a new site on the south bank of the Lewes below the junction.

Meanwhile, in 1842, J. Bell had crossed from the Peel to the Porcupine, and had descended the latter river for some distance. Again in 1846, while in charge of the post at Peel River, he crossed to the Porcupine and descended to the Yukon, where Fort Yukon was founded during the following year, 1847. It was not, however, until Campbell, in 1850, descended the river from Fort Selkirk to Fort Yukon that it was proved that both posts were on the same river.

In 1861 Robert Kennicott of the Smithsonian Institution, ${ }^{1}$ following the old Hudson's Bay Company route, crossed the divide at the head of the Porcupine and wintered at Fort Yukon.

In 1865 the Western Union Telegraph expedition began work with the idea of building an overland line from Europe to America across Asia and Bering Strait. ${ }^{2}$ The attempt was abandoned in 1867 owing to the success of the Atlantic cable, but their explorations and surveys resulted in the gleaning of considerable information about the interior of Alaska and what is now the Yukon, one direct result being a fairly good map of the Yukon River between Nulato and Fort Yukon. Dr. W. H. Dall, the head of this party, reached Fort Yukon by an up-river journey from the mouth of the Yukon. Ketchum and Labarge, also members of the expedition, ascended the Yukon River as far as Fort Yukon during the winter of 1866-7, and in the spring of 1867 went as far as Fort Selkirk by boat. Whymper, and others of the party, accompanied by Russian traders as far as the mouth of the Tanana, also made the trip to Fort Yukon. Whymper states 3 that the mouth of the Tanana, 240 miles above Nulato, is the farthest point ever reached by Russian traders, and that occasionally traders of the Hudson's Bay Company reached this same point from the eastward. He also makes note of the relief experienced by his party at the welcome contrast between the rather dirty Russian forts and the clean new establishment of the Hudson's Bay Company at Fort Yukon, for although the post had been founded in 1847, a new building had been begun in 1864, and was still unfinished when they arrived there. He also states that the fort was known to be well within the boundaries of Russian America, and gives interesting data as to the distances to other forts of the Hudson's Bay Company, and the time consumed in bringing supplies to Fort Yukon from England, via York Factory and the Mackenzie and Porcupine Rivers through the whole series of the Company's forts.

Although Alaska was ceded by Russia to the United States by the Treaty signed on March 30, 1867, ${ }^{4}$ it was not until August, 1869, that the Hudson's Bay Company at Fort Yukon was notified by Capt. C. W. Raymond, Corps of Engineers, United States Army, that the fort was within the territory of the United States, and that trading by the Company must cease. ${ }^{5}$ He took possession of the buildings, but they were later abandoned and allowed to go to ruin. Thus the Hudson's Bay Company was trading in Alaska for some little time after its purchase by the United States.

Ketchum and Labarge, on their return to Fort Yukon in 1867, reported the river navigable for the whole 600 miles to Fort Selkirk, a fact which, of course, had been known to the Hudson's Bay Company since 1850. This establishment was known as Mr. Campbell's Fort, and was then an abandoned station, having been burned down by the Chilkat Indians in 1852, after its abandonment.

[^64]" Its existence in the centre of the inland or 'Wood Indian' country had very seriously interfered with a lucrative and usurious trade which the Chilkoot and Chilkat Indians of Lynn Canal had long been accustomed to carry on with these people, acting as intermediaries between them and the white traders on the Pacific, and holding the passes at the headwaters of the Lewes with all the spirit of robber barons of old. In 1852 rumours were current that these people meditated a raid upon the post, in consequence of which the friendly local Indians staid by it nearly all summer of their own accord. It so happened, however, that they absented themselves for a couple of days, and at that unlucky moment the Coast Indians arrived. The post was unguarded by a stockade, and yielding to sheer force of numbers the occupants were expelled, and the place was pillaged on the 21st of August." ${ }^{1}$ It had been at one time the most important post of the Hudson's Bay Company to the west of the Rockies in the Far North, and with the exception of Fort Yukon and Fort Reliance, near the present site of Dawson, Y.T., was the farthest permanent post ever maintained by the Company in the northwest. ${ }^{2}$

The headwaters of the Yukon were first reached by white men from Lynn Canal about 1878, though traders from the lower river had probably visited this section before that date. Lieut. Schwatka, of the United States Army, when he crossed Chilkoot Pass in 1883 and descended the river, followed in the trail of numerous prospectors and miners who had already made the trip. He, however, made the first survey of the river, a survey later found to be reasonably accurate by Wm. Ogilvie, Dominion Land Surveyor, who in 1887 carried a micrometer survey across the Pass and down the river to his winter quarters near the International Boundary.

At the mouth of the Pelly on his way down stream, Ogilvie met Dr. Dawson of the Canadian Geological Survey who had come in via the Stikine River to Dease Lake, down the Dease River, up the Liard River and over Campbell's old Pelly River route,-though he was unable to find any trace of the old trail,- and down the Pelly to the mouth. After the meeting Dr. Dawson travelled up the Lewes and out to salt water over Chilkoot Pass.

Dr. Dawson's assistant, R. G. McConnell, had separated from him at the junction of the Dease and the Liard and had gone down stream to Fort Simpson, and after doing considerable exploring on the Slave, Salt and Hay Rivers, wintered at Fort Providence. In the spring he returned to Fort Simpson over the ice with dog teams, built a boat, decended the Mackenzie to the Peel, and ascended the Peel to Fort McPherson. He then crossed the mountains by the Peel River portage to Lapierre House, decended the Porcupine, passing Rampart House, to Fort Yukon, worked his way up the Yukon in a small boat and came out over Chilkoot Pass in September, $1888 .{ }^{3}$

In 1885, in the course of a remarkable exploratory reconnaissance of the Copper, Tanana, and Koyukuk Rivers, a party under Lieut. Henry T. Allen, United States Army, visited Nicolai's village on the Chitistone in about longitude $142^{\circ} 50^{\prime}$, this being the first approach to the 141st Meridian from the Copper River region. ${ }^{4}$

Ogilvie wintered in 1887-8 on the Yukon near the crossing of the 141st Meridian, where he determined the longitude and marked a temporary boundary line. ${ }^{5}$ In the

[^65]spring of 1888 he crossed over from the Yukon to the Porcupine watershed by going up Tatonduk River, across the divide and down the Porcupine to the mouth of the Bell. He ascended this latter river, crossed through McDougall's Pass, and reached Fort McPherson on the Peel River. From here he ran a micrometer traverse down the Peel and up the Mackenzie, eventually reaching Edmonton in December, 1888, having accomplished as the result of his twenty months' work, a good determination of the position of the Boundary on the Yukon and Fortymile Rivers, about 1900 miles of accurate instrumental survey, and nearly 800 miles of track survey, the greater portion of this latter being through a country previously unknown and untravelled by white men. ${ }^{1}$

In 1889, McGrath and Turner ascended the Yukon River to Fort Yukon, where they separated, Turner spending the winter of 1889-90 at Rampart House on the Porcupine River, and McGrath going on up the Yukon to the vicinity of the Boundary where he remained until the spring of 1891, when he descended the river and went out via St. Michael. ${ }^{2}$

In 1890 I. C. Russell ${ }^{3}$ of the United States Geological Survey carried a geologic reconnaissance from the mouth of the Yukon to its headwaters, returning to the coast by way of Chilkoot Pass.

In 1891 an expedition, organized by, and under the direction of, Schwatka, after coming in via the Taku route crossed from Fort Selkirk to Skolai Pass and thence down the Chitina and Copper Rivers to the coast. Dr. C. Willard Hayes, of the United States Geological Survey, who was the geologist of the party, made a remarkably accurate traverse of the whole route, and was therefore the first to locate the boundary at its crossing of the White River. ${ }^{4}$

In 1898, a United States Geological Survey topographic party in charge of W. J. Peters, with Alfred H. Brooks as geologist, went in via White Pass down the Yukon to the mouth of White River, and after ascending the White River and Snag Creek, portaged to Mirror Creek, a tributary of the Tanana, and descended this latter river to the Yukon, gaining much valuable information of the lower White River valley and of the country along the Boundary in the vicinity of Snag Flats. ${ }^{5}$
Another United States Geological Survey topographic party in charge of E. C. Barnard (now the United States Boundary Commissioner), which accompanied the party in charge of Mr. Peters as far as the mouth of White River, continued down the Yukon to the vicinity of the International Boundary Line, and during the summer of 1898 mapped the Fortymile Quadrangle which includes part of the Yukon River immediately below the International Boundary Line and the Fortymile district west of the Boundary. ${ }^{6}$

From this time on, the discovery of gold in various parts of that far northern region naturally attracted to it a great deal of attention, and it was visited by many geologists and explorers, too numerous to be mentioned in this brief sketch, each doing his share to extend the geographical and geological knowledge of the vast northland, until it was soon far from being the terra incognita it had been even a few years before.

[^66]Mention might perhaps be made of a topographical reconnaissance survey made in 1900, from the head of Chilkat River to Lake Kluane and thence down-stream to Dawson, by J. J. McArthur, Dominion Land Surveyor, (now His Britannic Majesty's Boundary Commissioner) as this trip had a more or less direct connection with the work done later during the survey of the boundary.

The discovery of gold was followed also by the rapid establishment of many different trading and transportation companies, and the Yukon valley particularly became the scene of great mercantile activity, and in connection with the establishment of transportation companies it may be of interest to note that the first trading steamboat ascended the Yukon River as early as $1869 .{ }^{1}$

[^67]
APPENDIX II.

LATER NEGOTIATIONS LEADING UP TO THE ACTUAL DEMARCATION OF THE BOUNDARY, WITH DETAILS OF FIELD WORK ON THE BOUNDARY PRIOR TO THE CONVENTION OF 1906.

Just as the gradual advance of traders from the east and west had made it imperative in 1821 that the limits of the areas open to the various nations should be described on paper by treaties and conventions, so the further advance of discovery, exploration, and commerce rendered necessary an actual demarcation of these limits on the ground.

The first official reference to this necessity we find in a resolution, dated March 12, 1872, of the Legislative Assembly of British Columbia, addressed to the Honourable Joseph William Trutch, Lieutenant-Governor of the province, asking him to draw the matter to the attention of the Dominion Government. In July of the same year a resolution to the same effect ${ }^{1}$ was passed by the Executive Council of the same province. Accordingly the matter was brought to the attention of the Colonial Office, and the British Ambassador at Washington enquired, in November, 1872, if the United States Government would be willing to agree to the appointment of a commission to consider the matter. President Grant also, in his Annual Message to Congress, 2nd December, 1872, recommended the establishment of the line before conflicting interests should make the matter of settlement a difficult one. A Bill ${ }^{2}$ authorizing the surveying and marking of the boundary, was actually reported to Congress in that month and received its first and second readings, but owing "to the immense amount of more important business," it went no further. The Corps of Engineers, United States Army, suggested, as an alternative to marking the line completely, that it would be sufficient to decide on several important isolated points to be marked, and among these we find the points where the 141st Meridian crosses the Yukon and Porcupine Rivers. The British Government also about this time took steps to ascertain the probable cost of the survey, and in November, 1873, Capt. D. R. Cameron, R.A., Commissioner at Ottawa in connection with the location of the International Boundary along the 49th Parallel, was asked to give an estimate of the approximate cost of the proposed survey, and of the time necessary to complete it. Owing to pressure of other business his estimate was not completed until February, 1875. Meanwhile, in February, 1874, Mr. J. S. Dennis, Surveyor General of Dominion Lands, made a report to the Honourable the Minister of the Interior at Ottawa, in which he stated, in part
"The undersigned is of the opinion that it is unnecessary at present to incur the expense of determining and marking any portion of the boundary under consideration, other than at certain of the points mentioned in the extract alluded to in the despatch from Sir Edward Thornton to the Earl of Granville, dated February 15th, 1873, that is to say:-
" 1.
" 2.
1" Alaska Boundary Tribunal. Appendix to the British Case." Vol. i, page 162 et seq.
2 42nd Congress H. R. 3254 3rd Session
(Mis. Doc. No. 20)
3"Alaska Boundary Tribunal. Appendix to the British Case." Vol. i, page 177.
" 3. The points where the 141st meridian west of Greenwich crosses the rivers Yukon and Porcupine.
" The points of crossing of the Yukon rivers and Porcupine might be fixed by a separate Commission.
" This might be easily done in one season."
Capt. Cameron, in his estimate also, gave as an alternative the marking of certain points, instead of surveying the whole line, his points being practically the same as those suggested by the United States engineers and by Mr. Dennis, and including the points on the Yukon and Porcupine Rivers. Congress, however, failed to make an appropriation at that time, and the matter was dropped, only to become acute again in November, 1876, on account of the "Peter Martin" affair. Peter Martin, a United States subject but a British prisoner, was being taken from Laketon, Cassiar, British Columbia, via the Stikine River to Victoria for trial. He escaped from his escort on what he alleged was United States territory near the mouth of the river, but was recaptured. The complications of this case drew attention anew to the necessity for a proper demarcation of the boundary, and caused the British and Canadian Governments to renew their requests at Washington for a Joint Commission to mark the boundary, at least in part.

With the exception of agreeing on a provisional boundary on the Stikine River in 1878, nothing was done with regard to surveying or marking the line. In 1884 and until 1888 we find the matter coming up incidentally and informally between Mr. Dall of the United States Coast and Geodetic Survey and Mr. G. M. Dawson of the Geological Survey of Canada, but without any practical results.

Wm. Ogilvie, D.L.S., 1887-8.
In 1887, owing to "the fact that somewhat important developments of placer gold mining had of late been attracting a yearly increasing number of miners and prospectors into a portion of the district in question ${ }^{\prime},{ }^{1}$ the Ogilvie expedition was sent into the then Far North to undertake exploratory and survey work, the latter including the preliminary determination of the point at which the 141st Meridian crosses the Yukon River.

The difference between conditions as they existed at that time and as they were found by those working on the later demarcation of the boundary is perhaps best illustrated by a few quotations from Mr. Ogilvie's graphic reports of his twenty months' work in the north.

In the first place, trouble was anticipated with the natives in certain localities. We have seen how Campbell, in 1843, was forced, to turn back at the mouth of the Pelly by the timidity of his men upon hearing tales of the alleged ferociousness of the natives farther down the Yukon. So, too, Ogilvie heard disquieting reports upon his arrival at Chilkoot on May 24, 1887. He says:" "The first news I received on landing was that there was trouble in the interior on the Lewes River in the vicinity of where I intended to go. A miner, who had recently arrived from the interior, stated that there had been a fight between the Indians and the miners at the mouth of the Stewart River. The result of the affair, he alleged, was that four Indians and two white men had been killed, and that the Indians had come up the river as far as the canyon to lie in wait for any white men who might be going into the country. I did not have

[^68]an opportunity of questioning him as he had gone to Juneau City the day before I arrived. The rumour seemed to me to be somewhat improbable; but true or false, it was an unpleasant one to hear, and the only way to verify it was to go and see whether the Indians were hostile or not. Happily the whole story proved to be untrue, as I subsequently learned from the miners in the interior, that he had difficulties with them, in consequence of which he was ordered in mid-winter to leave the region, which the miners consider equivalent to a sentence of death." This incident merely serves to show how vague was the knowledge, even at that late date, of conditions in the interior.

He started his survey from Pyramid Island in Chilkat Inlet, the latitude and longitude of this point having been determined by the United States Coast and Geodetic Survey in 1869. From here he carried a micrometer traverse up Taiya (Dyea) Inlet, over Taiya (Chilkoot) Pass and thence downstream to the crossing of the 141st Meridian. The Indians of the coast who had a fancied grievance against the English, asked $\$ 20$ per hundred pounds for packing his instruments and

Looking down Miles Canyon. supplies over the mountains to Lake Lindeman, and only after being informed by Commander Newell, of the U.S.S. Pinta, that the party had a permit from the Great Father at Washington to pass through the country safely, and that they would be punished if they interfered, did they finally consent to carry the outfit as far as the summit for $\$ 10$ per hundred pounds.

Ogilvie took two canoes with him from Peterborough, Ontario, and with these, after carrying them over the summit, and with a boat built at the head of Lake Bennett, he transported his supplies and outfit to the boundary, and made the landings necessary in connection with the micrometer traverse. The canoes were later taken over to the Mackenzie and were used by him on his trip up that river, and were left at Fort Chipewyan, after having been carried "about 170 miles" and doing "about 2,500 miles of work for the expedition."

At the mouth of the Pelly River, as arranged, he met Dr. Dawson of the Canadian Geological Survey, who had come in via the Stikine River, Dease Lake, and the Liard and Pelly Rivers, and after spending, as he says, "three days hard work" on "a correspondence designed to satisfy my friends and acquaintances for the ensuing twelve months," Dr. Dawson started up stream and he down. After attempting to ascend the White River, and carrying his traverse up the Fortymile as far as the canyon, he reached the vicinity of the boundary on the Yukon on September 14 the trip from salt water having occupied one hundred and eight days.

It may be of interest to note his description of the river which was to become, ten years later, the most famous in the world; little did he imagine the rush so soon to follow into the "Klondike ": "Six and one-half miles above Fort Reliance, the

Whitehorse Rapids.

Ton-dac River of the Indians (Deer River of Schwatka) enters from the east. It is a small river about forty yards wide at the mouth, and shallow; the water is clear and transparent, and of a beautiful blue colour. The Indian catch great numbers of salmon here. They had been fishing shortly before my arrival, and the river, for some distance up, was full of salmon traps. A miner had prospected up this river for an estimated distance of 40 miles in the season of 1887. I did not see him, but got some of his information at secondhand. The water being so beautifully clear I thought it must come through a large lake not far up; but as far as he had gone, no lakes were seen. He said the current was comparatively slack, with an occasional 'ripple' or small rapid. Where he turned back the river is surrounded by high mountains, which were then covered with snow, which accounts for the clearness and purity of the water."

The point selected for his winter quarters was on the north bank of the Yukon River, about three miles above the present boundary, its selection being governed principally by the fact that after traversing about four miles of the river bank on both sides he was able to discover only one tree of a diameter large enough to be used as a transit stand. He wished to get one of 22 inches, but was forced to accept one of 18 inches, enlarging it by attaching side pieces. "Round this stump" he built his transit house " of the ordinary form," some of the party meanwhile being engaged in building the " residence " and the magnetic observatory. He says:

A few remarks descriptive of our residence may not be uninteresting.
After clearing away the top soil and excavating some distance into the side of the hill for a foundation, the bottom round of the house was laid and imbedded in the place so cleared; the next round of logs was then put up and fitted in place; it was then rolled off, and on top of the first round was laid a thick layer of moss; the second round of logs was then put back in its place on top of the moss which was so thick that the second round did not lie on the saddles at the corners, but rode on the moss. This was done with each succeeding round until the requisite height was reached, when the ordinary kind of shanty roof, consisting of poles, was put on. On these was laid a layer of moss about one foot thick, and on this about one foot of clay. In the roof were two ventilators, which could be closed altogether if necessary.

To heat the building, a large stone furnace was built, in size 3 by 8 feet; the front end of this was fashioned into a fireplace, with an oven on top for cooking; the other end was formed into a chimney. The structure was a large mass of stones bound together by a tough, white clay, whcih we found in the vicinity, and which baked hard and white and did not crack with the heat. When this mass was once heated, which it took two days to do, it retained the heat for a long time.

With the weight of the roof and walls the moss between the logs was so pressed that it filled every crevice, and almost made a solid wall. During the winter the ventilators were kept open all the time; yet the lowest temperature observed in the house during our stay was 48° Fahrenheit; the average in the morning before the fire was lighted was about 60° Fahrenheit.

He had considerable trouble with his instruments, which were more or less damaged by their rough trip into the country. The levels for use with the astronomical transit were found to be useless, and had to be repaired and refilled with alcohol, of which he fortunately had a supply for preserving specimens, and " the reflecting telescope, intended for the observation of occultation of stars by the moon, having got out of order, owing, I suppose, to the continued damp, cool weather during the season, I had to fit up a tourist's telescope to take its place."

He speaks of navigation on the river as follows: " On the 22nd September a small steamboat named the New Racket passed my camp on her way up to Fortymile River, with supplies Three other steamboats which navigate the river, the Yukon, the St. Michael, and the Explorer, belong to the Alaska Commercial and Fur Trading Company."

Referring to the difficulties of winter observing, he says: "When I say that some of my observations were taken when the temperature was lower than fifty below zero, and often when it was lower than forty, and seldom higher than thirty below, one can appreciate the difficulty of getting the most accurate work from such limited appliances as the transportation facilities at that time afforded. Not only did the temperature add to the personal discomfort and interfere with bodily freedom through excessive clothing, for one must be very warmly clothed indeed to remain standing still in an open-roofed observatory for two hours in such temperatures, but it also seriously interfered with the instruments used, and imparied their delicacy."

However, in spite of the many difficulties and inconveniences, he was able to give a location for the boundary which compared most favourably with the final determination made in 1906, until which time his line stood as the accepted boundary. He also determined the azimuth of the line and produced it north and south a short distance. During the winter he also returned to the Fortymile River and continued his traverse up that river to the boundary crossing, which he marked by blazing trees on either side.

Having completed his work at the boundary, in the spring of 1888 he was again on his way over to the Mackenzie, which he ascended and returned to civilization at Edmonton in December of that year.

In his report, Mr. Ogilvie writes as follows concerning his method of determining the longitude:- ${ }^{1}$

In order to get all the data possible to determine the longitude of my observatory, I took every moon culmination I could get all through the months of November, December, January, and a part of February. To make these as accurate as possible, I observed the following method: A list of stars was selected succeeding each other in right ascension, at intervals of four or five minutes as nearly as possible, and containing ten stars. Their positions were such that the moon transited about midway in the group. The list contained, when possible, four moon-culminating stars, two polar stars, and four stars near the zenith. The first half of the group was observed with the transit clamp east; the transit of the moon's limb was then observed; the telescope then turned clamp west and the other half of the stars observed. From the star transits were deduced, by the method of least squares, the correction to the time of the passage of the moon's limb and the azimuth and collimation errors of the transit. The collimation and azimuth errors were applied with their proper signs to the moon at its transit; thus the right ascension of the moon was known for the place, and from the Ephemeris right ascension at its transit at Washington, or the right ascension at its upper and lower transit at Greenwich, the longitude of the observatory was deduced. ${ }^{2}$

[^69]The instrument used for these observations was a transit, F. O. 2, by Troughton \& Sims, of 28 inches focal length and $21 / 2$ inches aperture, and was one of those used by the British Commission on the survey of the 49 th parallel. Ogilvie found the value of one division of the level to be:-

$$
\begin{aligned}
& \text { at } 28^{\circ} \text { Fahrenheit } \ldots . .2 .03^{\prime \prime} \\
& \text { at } 41^{\circ} \quad \text { ". . }
\end{aligned}
$$

He continues:

I here insert a table of the results of the moon culminations I observed at my observatory. All the culminations observed in 1887 were computed from the British Ephemeris by using the right ascension of the moon's bright limb at upper and lower transit at Greenwich. All culminations observed in 1888 were computed from the American Ephemeris, by using the moon's right ascension at meridian passage at Washington. These were occasionally checked by computing from the hourly Ephemeris. I give date of observation, the number of stars observed, the deduced right ascension of the moon's bright limb, and the resulting longitude, for the purpose of comparison, first giving the observations taken on the moon's bright limb when crescent, following with those taken when it was waning:-

OBSERVATIONS ON FIRST LIMB

	No. of Stars.	Deduced R. A. of Moon's Limb.	Deduced Longitude in Time.
		h. m. s.	h.m. s.
Sept. 29, 1887	7	231459.47	$92335 \cdot 89$
Nov. 23, 1887	9	$233040 \cdot 62$	$92324 \cdot 19$
" 25, 1887	10	10224.39	$92326 \cdot 61$
Dec. 21, 1887	5	$235902 \cdot 65$	92328.02
" 22, 1887	6	$04459 \cdot 11$	92323.73
" 23, 1887	8	$13039 \cdot 34$	92321.54
" 27, 1887.	6	$44614 \cdot 33$	$92327 \cdot 32$
" 29, 1887	8	$63724 \cdot 78$	$92333 \cdot 16$
Jan. 18, 1888.	8	$02546 \cdot 91$	$92329 \cdot 15$
" 20,1888 .	8	$15741 \cdot 35$	923 30.19
" $21,1888$.	8	$24425 \cdot 21$	$92327 \cdot 50$
" 23, 1888 .	9	$42312 \cdot 90$	$92337 \cdot 72$
" 26, 1888.	8	$70944 \cdot 15$	92330.92
Feb. 23, 1888.	8	$73949 \cdot 33$	$92332 \cdot 68$
	Mean Probab	error of mean	$\begin{array}{r} 923 \quad 29.47 \\ \pm 3.01 \end{array}$

It would be a waste of time to sum these by weights, having regard to the moon's rate of motion, the number of stars observed, and the probable error of each night's work, as the accuracy of the result depends mainly on the accuracy of the observed transit of the moon's limb. This could be deduced from the observations themselves, but as I had not time when observing to do this, and have not done it since, I do not consider it worth the time to do it now, as it would affect the mean result very little.

OBSERVATIONS ON SECOND LIMB.

The mean of both is $9^{\mathrm{h}} 23^{\mathrm{m}} 36^{\mathrm{s}} .79$ in time, or in arc $140^{\circ} 54^{\prime} 11^{\prime \prime} .8$, west of Greenwich. It will be noticed that on the 29th December both limbs of the moon were observed. The moon arrived at opposition that evening a little more than an hour before it transited at my station, so that it was sensibly full on both limbs at the time of my observation. The mean of the longitudes deduced from that night's work agrees very closely with the mean of the two series.

Unfortunately, of all the occultations arranged for with Mr. King before leaving Ottawa, through the two lunations of October-November and November-December, of which about sixty would occur here, none were observed.

Soon after getting my transit mounted and adjusted, I got a culmination of the moon on the 29th September. I intended this as a check on the survey, and as a basis for the computation of the times of the occultations; but I did not see the moon or a star again until November, after both lunations of the programme were over. I then computed a lot of occultations in the next lunation, but was as unfortunate with them as with the others.

Later he says:

Three occultations were observed; I did not compute the longitude from them, as I had not time. But I always made the preparatory computation twice over, and sometimes three times, so that I had the time of occultation very close, for the longitude used in the computation ($9^{\mathrm{h}} 23^{\mathrm{m}} 36^{\mathrm{s}}$). I found the computed and the observed time so nearly the same that it was probable the difference was chiefly due to personal error in observation. I was therefore not so anxious to deduce the longitude from them as I otherwise would have been. Mr. W. F. King, Chief Inspector of Surveys, has computed the longitude from one of the occultations, the result of which I give.

December 5, 1887 -Occultation of Alpha Leonis. Chronometer time of immersion $1^{\mathrm{h}} 27^{\mathrm{m}} 12^{\mathrm{s}} \cdot 6$. Emersion not visible. Chronometer fast $9^{\mathrm{h}} 31^{\mathrm{m}} 42^{\mathrm{s}} \cdot 51$.

This occultation was observed in daylight near the horizon, and with a small telescope, so it cannot be called good.

January 23, 1888-Occultation of 75 Tauri. Chronometer time of immersion $12^{\mathrm{h}} 4^{\mathrm{m}} 16^{\mathrm{s} .25}$. Emersion not visible. Chronometer fast $9^{\mathrm{h}} 33^{\mathrm{m}} 23^{\mathrm{s}} \cdot 42$.

January 23, 1888-Occultation of Alpha Tauri. Chronometer time of immersion $16^{\mathrm{h}} 31^{\mathrm{m}} 07^{\mathrm{s}} .55$. Emersion $17^{\mathrm{h}} 18^{\mathrm{m}} 49^{\mathrm{s}} .35$. Chronometer fast for immersion $9^{\mathrm{h}} 33^{\mathrm{m}} 23^{\mathrm{s}} .81$; for emersion $9^{\mathrm{h}} 33^{\mathrm{m}} 23^{\mathrm{s}} .87$.

Mr. King's longitudes in time, computed from the times of immersion and emersion of the last star, are respectively $9^{\mathrm{h}} 23^{\mathrm{m}} 45^{\mathrm{s}} \cdot 28$, and $9^{\mathrm{h}} 24^{\mathrm{m}} 11^{\mathrm{s}} \cdot 22$. In the case of this occultation the immersion was by the moon's dark limb, and there was no difficulty in observing it, but my telescope was much
too small to show when the star emerged from the moon's bright limb, and the emersion was not noted until the star stood out clear from the moon, probably a second or more too late, the effect of which would be to make the resulting longitude too great.

Regarding these lunar observations we read in the report of Mr. (later Dr.) W. F. King: ${ }^{1}$

It was important for him (Ogilvie) to get his longitude there as accurately as possible, both as a check on his survey and also to give an approximation to the point where the boundary line, as defined by the treaty, crosses the Yukon River.

There being no telegraph line, and the journey being too long and too rough to permit him to carry his time by means of a chronometer with any certainty of it keeping its regular rate, the alternative was lunar observations.

The principle of lunar observations is this: the place of the moon among the fixed stars being determined at any known local time and the place of the moon being predicted and tabulated in the Nautical Almanac for each hour of Greenwich time, the Greenwich time is found at which the moon has the place given by the observation; that is, the Greenwich time corresponding to the local time of the observation is found, and thence by the difference of these times the longitude from Greenwich is obtained. The Greenwich predictions, in fact, supply the place of the corresponding observations, as well as of the signals in the method by the electric telegraph. The local time, of course, must be accurately determined in this as in the other method.

The methods commonly used for determining the Greenwich time are moon culminations and occultations of stars by the moon.

In the former of these methods, the transit of the moon is observed, as well as the transits of a sufficient number of stars to determine the adjustment errors of the instrument used, and the chronometer correction. The deduced time of transit of the moon's centre over the meridian is the right ascension of the moon. This by comparison with the right ascensions tabulated for each hour in the Almanac, gives the Greenwich time of the moon's transit, and the local time is given by the chronometer with its correction applied.

The occultation of a star is the passage of the moon between the observer and the star, eclipsing the latter. The observation consists in noting the exact time at which the star disappears under the the moon's limb and again when it reappears. Transit observations of stars must also be taken to determine the correction of the chronometer. The Greenwich time of the occultation is found from the tabulated right ascensions and declinations of the star and the moon, and the moon's parallax, by a somewhat lengthy calculation.

Both these methods are capable of considerable accuracy, but in comparing them with the telegraphic method it is to be noted that in the latter an error in the observations amounting to one-tenth of a second causes an error in the longitude of just the same amount, but in any lunar method, on account of the comparatively slow motion of the moon with reference to the stars, its right ascension changing only about one second in twenty-seven seconds of time, an error of one-tenth of a second in the observed right ascension produces an error in the longitude twenty-seven times as great.

In the moon culmination observations, moreover, there is difficulty in accurately observing the transit of the moon's limb. The accuracy of this observation is not to be compared with that of a star transit. In this respect the occultations are preferable, since the disappearance and reappearance are perfectly instantaneous.

All lunar methods, however, are subject to great uncertainty from the fact that in the present state of the lunar theory, the place of the moon cannot be predicted with the accuracy required in this work. To cut out the effect of these imperfectly known discrepancies in the moon's motions, corresponding observations had to be taken at some place of known longitude as near as possible to Mr. Ogilvie's station, so that corrections might be obtained from the observations at the known station to be applied to the tabulated moon's place in the subsequent working out of the corresponding observations taken by Mr. Ogilvie.

For this purpose I went to Kamloops, the longitude of which had been determined by telegraph, and which was the nearest point so determined to the locality in which Mr. Ogilvie intended to winter.

I remained at Kamloops during two lunations, from the new moon in October to the new moon in December, observing the transit of the moon whenever possible, as well as all the star occultations which occurred above the horizon at Kamloops and at the northern station. Mr. Ogilvie was to

[^70]observe the same phenomena. Unfortunately my list of occultations observed as well as of moon transits is very fragmentary. Unusually cloudy weather prevailed during the whole time of my stay, very few nights being clear.

A further programme was arranged to be carried out in April and May next. The partial failure of the October and November programme renders the carrying out of this one more important, and I hope that greater success will be obtained.

Regarding his observations for latitude, Mr. Ogilvie says: ${ }^{1}$

I determined the latitude of a point 60 feet north of my transit stand by setting up very carefully my 4-inch transit in the prime vertical. To insure all possible steadiness I suspended heavy weights from the tension screw of the instrument, so that the foot screws and the rest of the instrument were almost as rigid as if solid. By several trials I very carefully determined the value of a division of the striding level of the instrument, and found it to be $20^{\prime \prime}$, and it was sensitive enough to plainly show one-fourth of this, and less than that could be estimated. I used on the telescope the eye-piece of the astronomical transit, which gave me power enough to see distinctly when a star crossed the wires, and yet was not too powerful for proper definition. I used three wires in the telescope, of which the aperture was one inch and the focal length 10 inches. I had a reference object fixed west of the instrument about half a mile, consisting of a box with an inch and a half slit in one side of it, which was covered with a piece of white cotton. In the box was placed a candle, the light of which shone through the cotton in the slit, presenting a bright clear mark, without any radiation of light. Just before observing a star transit the instrument was carefully levelled, then pointed on the R.O. and then on the star, and the passage over the wires observed; the level was then read, and the telescope again pointed to the R.O. to see that no movement had taken place in the interval.

On the 24th of October, 1887, I observed the following prime vertical transits of stars east and west of the meridian: η Draconis, west transit, circle south; η Cephei, east transit, circle north; 36 Draconis, west transit, circle north. The chronometer error was determined by a few star transits. When clouds prevented further observations that night, the latitude deduced from the several transits stood as follows:-

```
\eta Draconis 64* 40' 57''.2
\eta Cephei 64'40' }5\mp@subsup{7}{}{\prime\prime}.
36 Draconis 64 64 40' 58'\prime.4
Mean of all 64' 40' 57'\prime.7
```

Using as a basis the longitude of his observatory as computed in the field, he ran a micrometer traverse on the ice down the Yukon, and located the boundary, which was marked temporarily by blazing a couple of trees.

J. E. McGrath and J. H. Turner, 1889-91. ${ }^{2}$

The United States, in 1889, decided to make an independent location of the 141st Meridian at the Yukon River, and also to make a preliminary location of the boundary at the Porcupine River.

Accordingly, Assistant J. E. McGrath and Sub-Assistant J. H. Turner, of the United States Coast and Geodetic Survey, were assigned in charge of the work on the Yukon and the Porcupine, respectively. From San Francisco they went in by way of St. Michael, where they arrived in June, 1889, and were informed that the Alaska Commercial Company would be unable to transport the combined parties and equipment on the first steamboat to be dispatched up the Yukon River, but that the " knock-down" parts of the new steamer which, with a party of ship carpenters and machinists, had arrived on the vessel on which the survey parties had

[^71]

Howling Dog Rock, Porcupine River.
travelled from San Francisco, would be assembled in the course of three or four weeks, and would have plenty of time to transport supplies as far as the mouth of Fortymile River before navigation would be in any danger of closing.

In view of the fact that the Porcupine River was navigable for steamboats only for a few weeks in the summer, it was agreed to put all the Porcupine River party supplies and equipment on board an old steamer which was available, and then to take on board the personnel of the Yukon River party and all that was practicable of their outfit, this comprising all the instruments, tools, and about three months' full supply of provisions. The combined parties travelled together to the site of Old Fort Yukon, where Mr. McGrath's party and outfit were disembarked to await the return of the steamer which carried Mr. Turner's party up the Porcupine. Mr. Turner and his party proceeded up the Porcupine on the Yukon until August 6, when Capt. Peterson

The Porcupine River below Rampart House, looking down stream.
decided that he would be unable to take the boat any farther, and the party was landed some fifty miles below the boundary. From this point the supplies were laboriously " tracked " up the river in a whaleboat and a lighter, with the assistance of some Indians, and it was October 4 before the supplies were landed at the present Rampart House, which had been selected as the site for the winter quarters, and the buildings erected and prepared for occupation.
The old Hudson's Bay Company post of Rampart House has a very interesting history. The post was originally established after the abandonment of Fort Yukon to prevent the encroachment of traders from the west. The site first chosen was near Howling Dog Rock, about forty-five miles below the crossing of the 141st Meridian, although it was thought at the time to be well within British territory. In 1887 some doubt seems to have arisen as to this and, to make doubly sure, the buildings were burned and the post was built farther up opposite the mouth of Salmontrout River. The buildings were allowed to remain here, however, only one winter, until Turner had located the boundary, when they were carefully taken down and transported to their present site only a few yards east of the Meridian, where they were re-set. A few years later the post was abandoned by the Company, since when it has been first a Church of England mission and subsequently the post of an independent trader, Dan. Cadzow, as will appear later. It was also the Boundary Survey base in 1889-90 and in 1910, 1911, and 1912, and curiously enough Turner's building was again used as boundary survey headquarters during the winter of 1911-12.

In his report of his trip down the Porcupine, McConnell says:
The Porcupine ${ }^{1}$ in passing through the Ramparts contracts considerably, and in places does not exceeds 75 yards in width. The current is more rapid than in the upper part, and was estimated to run at the rate of about three or four miles and a half an hour. Short riffles, with a much greater velocity than this, occur occasionally, but no rapids or other obstructions were met with which would prevent the navigation of the stream by small steamers.

[^72]

In the Lower Ramparts of the Porcupine River.
23565 - $15 \frac{1}{2}$

The Half-way Pillar, an $\underset{\text { (Porcupine River.) }}{\text { old Huy Company landmark. }}$

The Ramparts is a local name employed by the traders to designate a contracted, walled valley or canyon. The portion of the valley of the Porcupine which passes under this name is exceedingly picturesque. In the upper part, the banks rise steeply from the water's edge on both sides to heights of from three to five hundred feet, and their green slopes are everywhere broken by shattered pinnacles and bold crags and cliffs of brilliantly tinted dolomites and quartzites standing almost on edge. As we descend, the enclosing walls become higher and steeper, and the lighter shades are replaced by more sombre hues. Some miles above Rapid River a band of basalt, edged with vertical cliffs, appears above and gradually descends in the banks of the canyon until it reaches the bottom, and from this on, the gorge is bounded by even, precipitous walls carved out of this rock. The uniformity of this part of the valley is interrupted at intervals by deep gashes cut by tributary streams through the basalt covering. Of these the principal one is Rapid River, which enters the Porcupine about seven miles above the post. ${ }^{1}$ A mile below Rapid River is the Half-way Pillar, a projecting column of rock, which was supposed by the traders to be equi-distant from Lapierre House and Fort Yukon.

During the winter, Turner kept up meteorological and magnetic observations, executed some triangulation in the vicinity of the camp, and began a topographical survey of the country in the immediate neighbourhood of the boundary, this map being completed in June; and in addition, observed for latitude and longitude and marked the boundary line by three temporary monuments. In March he organized a sledge expedition to the Arctic Ocean. He wished to make a preliminary survey of the line to the coast, but owing to the poor behaviour of his chronometers, he was able to make only a geographical reconnaissance of the route travelled. He appears to have gone north until he struck the Firth Valley, which he descended to the coast nearly opposite Herschel Island. After obtaining observations for azimuth and latitude, he

Temporary boundary mark on the south bank of the Porcupine River,' set by Turner in 1889-90. Photographed 1909.

[^73]immediately turned south again, reaching Rampart House after an absence of eighteen days, during which he had travelled approximately four hundred miles. A temperature of -50° Fahrenheit was recorded on the eighth day out. Shortly after this he organized another expedition, under Assistant Astronomer Edmonds, to attempt to get south to join Mr. McGrath on the Yukon,

Turner's winter quarters, 1889-90. Photographed 1909. but early spring thaws prevented, and the party was forced to turn back after getting south only 40 miles. Having finished his work in connection with the temporary demarcation of the boundary, Turner left Rampart House on July 15, 1890, with his supplies in two lighters, and, making a plane-table-telemeter survey of the river as he went, reached Fort Yukon in twenty-two days, the distance being 210 miles. Reaching St. Michael too late to get a boat south that season, he went into winter quarters there and carried on general astronomical and survey work during the winter and spring, and sailed for San Francisco in July, 1891.

At Rampart House, or, as he called his winter quarters, Camp Colonna, Turner, like Ogilvie, adopted the methods of moon culminations and occultations, the corresponding observations for the moon culminations being made at San Francisco by Assistant Fremont Morse.

His station ${ }^{1}$ was located on the north bank of the Porcupine River, a short distance above its intersection with the boundary, and at an elevation of 98 feet above the river.

The observations for latitude were made with meridian telescope No. 13, focal length 66 cm ., aperture 5.3 cm ., magnifying

The trader's new house at Rampart House, said to be the finest residence in America north of the Arctic Circle. power with diagonal eyepiece about 72 . One division of the latitude level was found to equal $2^{\prime \prime} \cdot 36 \pm 0^{\prime \prime} \cdot 01$ as determined at Camp Colonna, October 30, 1889, at a temperature of $-10^{\circ} .9$ Centigrade. The value of one turn of the micrometer was found from observations of a Ursae Minoris at eastern elongation, 1890, July 5, 6, 8, viz., $77^{\prime \prime} \cdot 609 \pm 0^{\prime \prime} \cdot 007$, the separate results being very consistent. Local time was obtained by means of the same instrument, and kept by sidereal chronometer Hutton No. 223.

Numbers of pairs of stars observed, 24; average number of observations upon a

[^74]pair, 4 ; the probable error of an observation for latitude is $\mathrm{e}_{0}= \pm 1^{\prime \prime} .03$, a very large value, and it is supposed to be due to the difficulty of operating at very low temperatures. The micrometer, as well as the level values, as given above, were found to satisfy the latitude work very well. The probable error of the resulting latitude is $\pm 0^{\prime \prime}$. 14 .

RECAPITULATION OF RESULTS FOR LATITUDE, CAMP COLONNA, PORCUPINE RIVER, ALASKA.

${ }_{2}^{1}$ For probable error of a star's place the value $\pm 0^{\prime \prime} \cdot 2$ was used in the computation for the weight w.
${ }^{2}$ N.B.-For the combination, two-thirds of the tabular weights are to be used.
The longitude ${ }^{1}$ of his station rests wholly upon 13 moon culminations and 1 occultation. For its approximate location close to the boundary, the longitude of Fort Yukon, 210 miles distant, as determined in 1869 by Capt. C. W. Raymond, was made use of. In consequence of cloudy and foggy weather, no chronometric connection was made between the two places on the ascent of the river in 1889, but it succeeded on the descent in the following year.

Although the number of astronomic observations for longitude was small, owing to fog during the winter, clouds during the summer, and the continuous twilight about the beginning of May, rendering observations of stars difficult, sufficient data were obtained to make the determination of the boundary satisfactory for all practical purposes at that time. Faint stars such as many of the moon culminations stars, could only be observed with difficulty, or not at all, and the probable error of a time determination by a single star which in middle latitudes would be nearly ± 0 s. 04 , rises to ± 0 : 08 within the Arctic Circle.

[^75]SUMMARY OF RESULTS FOR LONGITUDE ${ }^{1}$ AT CAMP COLONNA, PORCUPINE RIVER, FROM OBSERVATIONS OF MOON CULMINATIONS BETWEEN NOVEMBER, 1889, AND APRIL, 1890.

Ibid: page 335, et seq.
Values inclosed in brackets were obtained from the moon's defective (in illumination) limb, as corrected. The result of December 28 from corresponding observation at San Francisco has been given double weight on account of the known personal equation.

From $\Sigma p \lambda=526 \cdot 3$ and $\Sigma p=9 \cdot 5$ we have the weighted mean value for the longitude of the observatory $9^{\mathrm{h}} 23^{\mathrm{m}} 55^{\mathrm{s}} .4$ as far as this depends on the observed moon culminations. Forming $\Sigma p v^{2}=367 \cdot 5$ and putting $n=13$ we get the probable error of a single determination for longitude from moon culminations $0.675 \sqrt{\frac{\sum p v^{2}}{n-1}}= \pm 3^{8} \cdot 7$.

Combining with the preceding result that deduced from the occultation of η Geminorum on November 10, 1889, both immersion and emersion being observed, and with a revised chronometer correction and a corrected lunar ephemeris from Greenwich observations, the resulting longitude from the immersion is $9^{\mathrm{h}} 24^{\mathrm{m}} 05^{\mathrm{s}} \cdot 9$, and from the emersion $9^{\mathrm{h}} 24^{\mathrm{m}} 01^{\mathrm{s}} \cdot 4$, with a mean of $9^{\mathrm{h}} 24^{\mathrm{m}} 03^{\mathrm{s}} \cdot 6$.

Results from occultations being of superior value in comparison with moon culminations, the weight 2 was assigned to it in connection with tabular weights p. The final value then was
$\Sigma p \lambda=653 \cdot 7$ and $\Sigma p=11.5$

$$
\lambda=9^{\mathrm{h}} 23^{\mathrm{m}} 56^{\mathrm{s}} \cdot 9 \text { or } 140^{\circ} 59^{\prime} 13^{\prime \prime} \cdot 5
$$

with a probable error, $0.675 \sqrt{\frac{\Sigma \frac{p v^{2}}{\Sigma(p)(n-1)}}{}}=\quad \pm 1 \cdot 2 \quad \pm 17 \cdot 7$.
Mr. McGrath's stay at Fort Yukon was utilized by making sextant time observations at Captain Raymond's longitude station of 1869, in observing latitude by circummeridian observations on the sun, and in obtaining an azimuth and full sets of magnetic observations. On the return of the steamer, the Yukon party was taken on board and transported to the site of the station occupied by Mr. Ogilvie and his party in 1887-8. The first work undertaken was the extension of the buildings used for living purposes,
the repair and putting in order of the magnetic and astronomical observatories, and the mounting and adjusting of the instruments to be used in these buildings.

Early in October, a canoe arrived at Camp Davidson (the name given the station), with a note from the Alaska Commercial Company's manager in St. Michael, containing notification that the new steamboat had been wrecked while en route to the mouth of the Yukon, and that while the greater portion of the cargo had been salvaged and the steamer raised, the necessary repairs made it impracticable for the company to get any supplies, in this year, farther up the river than the Shaman's village, a point about 600 miles down the river from the boundary; and advising that the party immediately repair to that point. A similar letter was addressed to the company's representative at the mouth of Fortymile River, notifying him that no supplies could be hoped for from St. Michael in this season, and directing him to so notify all the miners in his district who did not have sufficient food on hand.

These communications were read to all the members of the party, who were also notified that the Chief of the Party proposed to remain at Camp Davidson, but that no other man need feel under any obligation to stay; nevertheless, for all who remained an equal share of what provisions were on hand was assured. The answer to this was the declaration from each man in the party of his intention to remain, and at once an exact inventory was made of the remaining provisions, which disclosed what was equivalent to a full two months' supply, except of kerosene, of which unfortunately only a very limited stock remained-a most distressing lack in high latitudes, with winter coming on -and the party was at once put on the ration which its prospects made imperative.

In about ten days a flotilla of boats and canoes brought 100 miners to camp whose destitute condition forced them to abandon their work. These, taking a 10 -ton barge which had been left at the camp by the steamer Yukon, proceeded to the lower river, accompanied by two men of the party, who were directed to take charge of all the United States property which had been saved and carried to the Shaman's village. About a week after the miners departed, an Indian messenger from Mr. McQuesten, the trader at the mouth of Fortymile River, brought word that the Indians on that river had just sent him word of their phenomenal success in hunting, and that they had slaughtered the greatest number of moose and caribou in the record of many years, and Mr. McGrath was told he could have whatever quantity of fresh meat he desired. He was also informed that an experimental attempt at cultivating turnips had proven so successful that a supply of this vegetable also could be had. Acting on this cheering information, men were despatched to McQuesten's post, and on their return brought 3,500 pounds of venison and nearly half a ton of turnips.

James McLarty and James French, who had accompanied the miners down the Yukon, taking into account the condition of the supplies at Camp Davidson on their departure, started out from the Shaman's village early in March with two dog sleds loaded mainly with flour, and for nearly two and a half months struggled through an unbroken stretch of ice and snow along the Yukon. Much of the way had to be travelled over twice and some three times to get their loads over the irregularly heaped-up ice which covered the route they were following, and, with only one sack of flour left out of the stock with which they had started, they arrived at Camp Davidson at the end of May, just one day before the ice broke for the season.

These were the first white men to make a journey in winter over the 600 miles which measures the distance from the Shaman's village to the boundary. The stock of flour at Camp Davidson during the winter was sufficient to allow about two ounces of bread per day per man, and the diet of the party was almost a uniform one of venison
and turnips from October, 1889, to June, 1890, when the first steamer bringing supplies from St. Michael reached the camp.

In addition to the astronomical observations, the routine included making meteorological observations, which were made three times daily, and magnetic observations for declination, dip, and horizontal intensity, which were made on three days in every month. The meteorological instruments were the set used by the Greeley party at Lady Franklin Bay, and the lowest temperature recorded was-60.4 Fahrenheit. A small triangulation was extended from the astronomical observatory to the mark left by Mr. Ogilvie near the intersection of the Yukon River and the 141st Meridian; a traverse line was measured in April, 1891, from Camp Davidson to the mouth of Fortymile River; and a chronometer expedition was made between the mouth of Fortymile River and a point above the canyon on that river which Mr. Ogilvie had marked as being at the intersection of the river and the Boundary.

At the close of the occupation of Camp Davidson the party started for St. Michael on a barge left for this purpose by the Alaska Commercial Company, and maintained a running survey of the river from Camp Davidson to the Holy Cross mission, just below Anvik, which was checked by astronomical observations at Fort Yukon, St. James mission, and Nulato. This survey was discontinued to enable the party to catch the last boat that would enable them to get back to civilization in that year.

The results of Mr. McGrath's two seasons on the Yukon so far confirmed the position of the Ogilvie line that it was accepted as the temporary boundary until the final determination of the meridian was undertaken under the provisions of the Convention signed at Washington, April 21, 1906.

His observations of 1889^{1} were made with meridian telescope No. 16 ; value of one division of level $1^{\prime \prime} .86$ and of one turn of micrometer $67^{\prime \prime} \cdot 50$, as determined from observations of Polaris at eastern elongation on October 10. Twenty-one pairs of stars were observed, and the average number of observations of each was less than three. The measures were comparatively rough, and yet of sufficient accuracy for the purpose intended. Probable error of a single observation $\pm 1^{\prime \prime} \cdot 3$, and of the final result $\pm 0^{\prime \prime} \cdot 3$. The individual values follow:-

No. of Pairs of Stars.	Stars from B.A.C.	n	Weight.	Latitu	
				-	"
1.	7621 and 7658	2	$1 \cdot 1$	6440	51.89
2.	76867778	1	$0 \cdot 6$		$52 \cdot 57$
3.	77997896	1	0.6		51.93
4.	79678068	2	1.2		52.45
5.	81248162	3	1.8		$48 \cdot 37$
6.	81888204	3	1.8		51.04
7.	8238 8252	2	1.2		47.88
8.	86	2	1.2		51.80
9.	219320	3	1.8		50.93
10.	416438	4	$2 \cdot 4$		51.22
11.	605705	3	1.7		52.67
12.	$863 \quad 955$	4	$2 \cdot 4$		48.22
13.	10621137	3	1.8		52.85
14.	1211	3	1.7		49.94
15.	13821428	3	1.8		50.54
16.	14481477	3	1.8		48.21
17.	20832107	1	0.6		$56 \cdot 13$
18.	$2223-2157$	3	$1 \cdot 8$		52.01
19.	24106650	4	$2 \cdot 4$		50.95
20.	$2722 \quad 2792$	4	$2 \cdot 3$		53.80
21.	71242937	3	$1 \cdot 8$		$52 \cdot 34$
		57		6440	51.09
	Weighted mean $64^{\circ} 40^{\prime} 51^{\prime \prime} \cdot 08 \pm 0^{\prime \prime} \cdot 28$.				

The observations of 1891 were made with an 8 -inch (20 cm .) Gambey vertical circle No. 57, with four verniers reading to the nearest $5^{\prime \prime}$. Polaris was observed direct and reflected in mercury, and altogether 116 sets were obtained in ten nights, as shown in the following table of results, according to the office computation:-

	Date.	No. of sets circle		Mean latitude from sets with		R-L	Mean latitude.	Δ
		R	L	Circle R.	Circle L.			
1891				"	"		- , "	"
April		11	0	59.2			$64 \quad 40 \quad 57 \cdot 4$	$-4 \cdot 8$
" 5		10	0	57.9			$56 \cdot 2$	-3.6
" 25		6	6	$56 \cdot 7$	49.7	$+7 \cdot 0$	$53 \cdot 2$	-0.6
May		6	6	$54 \cdot 7$	$50 \cdot 8$	$+3.9$	$52 \cdot 8$	-0.2
"		6	6	53.9	47.9	$+6.0$	$50 \cdot 9$	+1.7
"		6	6	$55 \cdot 5$	$49 \cdot 6$	$+5.9$	$52 \cdot 6$	$0 \cdot 0$
"		6	6	$53 \cdot 7$	$49 \cdot 5$	$+4 \cdot 2$	$51 \cdot 6$	+1.0
"		6	6	$52 \cdot 0$	$54 \cdot 5$	$-2 \cdot 5$	$53 \cdot 2$	-0.6
"		6	6	$53 \cdot 2$	$50 \cdot 2$	$+3 \cdot 0$	$51 \cdot 7$	+0.9
"		5	6	$50 \cdot 7$	$50 \cdot 2$	$+0.5$	$50 \cdot 4$	+2.2
	Wei					$+3 \cdot 5$	$644052 \cdot 6$	$\pm 0 \cdot 5$

For the 4th and 5th of April the results are reduced to mean of Circle R and L by application of half of the mean difference $3^{\prime \prime} \cdot 5$ with weight $\frac{1}{2}$ to each result.

Combining the results for the latitude gives:-
From observations of Polaris with vertical circle $\ldots \ldots \ldots . . .$.
From micrometric differences of stars N . and S . of the zenith
$\begin{aligned} & \text { by meridian telescope. } \\ & \text { Weighted mean. } \varphi=64^{\circ} 40^{\prime} 51^{\prime \prime} \cdot 5 \pm 0^{\prime \prime} \cdot 3\end{aligned}$
$51^{\prime \prime} \cdot 1 \pm 0^{\prime \prime} \cdot 3$

Mr. McGrath's observations for longitude ${ }^{1}$ comprised two occultations in January, 1891; a transit of Mercury, May, 1891; a solar eclipse, June, 1891; and a series of moon culminations between November, 1889, and April, 1891. In the office computations and corrections to the lunar ephemerides were taken from the Greenwich observations, and corresponding observations made at San Francisco, Cal., in connection with the moon culminations were utilized. Transits of Mercury are phenomena not favourable for exact longitude determinations, and as but one phase was observed, no use was made of the observations, nor of twelve photographs secured while the planet was in transitu. The computations gave for the longitude of Camp Davidson, Yukon River:-

From Immersion of 30 Piscium, Jan. 14, 1891^{2}
$9^{\mathrm{h}} 23^{\mathrm{m}} 35^{\mathrm{s}} \cdot 5 \mathrm{~W}$. of Greenwich.
From Immersion of 33 Piscium, Jan. 14, 1891 $37 \cdot 2$
From first and last contact, solar eclipse, June 6, 1891. $32 \cdot 2$

Weighted mean (the last result having weight $1 / 2$) with a probable error of about ± 1 sec.
$9^{\mathrm{h}} 23^{\mathrm{m}} 35^{\mathrm{s}} .5 \mathrm{~W}$. of Greenwich.

[^76]The moon was observed on twenty-three days, on nineteen of which satisfactory results were obtained. The results marked with an asterisk in the following table were obtained by comparing the Camp Davidson observations with the Greenwich Ephemeris, corrected by interpolation; in all other cases there were corresponding observations either at San Francisco or at Greenwich, or at both places. The weights assigned to the mean value for each day depended upon whether there were corresponding observations at one or both stations, and whether one or both limbs were observed.

```
SUMMARY OF RESULTS FOR LONGITUDE 1 OF CAMP DAVIDSON, FROM OBSERVATIONS OF MOON CULMINATIONS.
```


$\Sigma p=30 \cdot 3$ and weighted mean $38^{\prime \prime} \cdot 5$, hence the resulting longitude from the moon culminations, $9^{\mathrm{h}} 23^{\mathrm{m}} 38^{\mathrm{s}} \cdot 5 \pm 0.675 \sqrt{\frac{\Sigma(p v v)}{\Sigma(p)(n-1)}}= \pm \cdot 0^{\mathrm{s}} \cdot 8$, and it should be noted that the separate results from the two limbs of the moon show no decided specific difference.

[^77]In combining the results for longitude from occultations, the eclipse, and the moon culminations, the probable error $\pm 1 \mathrm{sec}$. assigned to the former result is too weak for use in combination, and, assigning the weight 2 to each occultation result, and the weight 1 to the eclipse result, we have:-

The conditions under which the astronomical observations were made were most trying because of the arctic temperatures of the season between the months of November and April, which furnished the best period for observing so far as seeing was concerned. During these months the losing rate of the chronometers attained a maximum of between five and six minutes per day, and constant surveillance was required for the level vials in which tiny spicules of ice formed occasionally, and sometimes so minute as not to be visible, although suspected because of erratic movements of the bubbles in the vials. The observations in connection with the determination of the longitude at Camp Davidson from occultations of 30 and 33 Piscium were made at a temperature of -50° Fahrenheit.

Wm. Ogilvie, D.L.S., 1895-6.
In the summer of 1895, Mr. Ogilvie was again sent out to produce the meridian, from the point established by him in 1887-8, north and south as far as necessary to furnish a conventional line of jurisdiction throughout the region occupied by the miners, who were in considerable numbers in some districts, notably in the vicinity of the Fortymile.

In order to determine the exact position of the boundary as referred to his observatory of 1887-8, he made a careful triangulation and chained traverse survey westward from the observatory, the result being that the original location, which had been established from the observatory by micrometer measurements only, was found to be 109 feet too far to the eastward. From this new point, he moved $42 \cdot 5$ feet farther west in order to have the line cross the Yukon at the mouth of a small creek, thus securing a permanent natural mark for the line, and from there, during the summer and late fall, he produced the line north about five miles, opening out a good wide vista in the vicinity of the river, but placing no permanent marks. During the ensuing winter he also succeeded in getting ten new determinations of longitude to be later combined with his observations of 1887-8. In February he resumed work on the line, and by the middle of April he had opened out the line as far south as the Sixtymile River, where the work was abandoned. The line, as far as run, was marked by cairns of stones wherever it was possible to procure them with reasonable time and labour, and it was cut and blazed so as to be easily recognizable. ${ }^{1}$

During this winter he used the same instrument as in 1887-8, again employing the method of moon culminations. The value of one division of his level was, at $28^{\circ} \mathrm{F}$., $2^{\prime \prime} \cdot 03$, and at $-41^{\circ} \mathrm{F} ., 2^{\prime \prime} \cdot 41$, and the result of his field computation of his observations differed from his $1887-8$ results by $1^{s} \cdot 052$.

[^78]A complete office re-computation of all his work gave the following results ${ }^{1}$:-
SUMMARY OF RESULTS OF OFFICE RE-COMPUTATION OF OGILVIE'S 1887-8 OBSERVATIONS.

9h. $23 \mathrm{~m} .+$ tabulated seconds.

	Date.	Moon's Limb.	
		I.	II.
1887.		sec.	sec.
Sept. 29.		37.23	\ldots.
Nov. 23.		28.46
25.		$26 \cdot 87$	
Dec. 1.			$49 \cdot 48$
2.			53.28
3.			$48 \cdot 40$
6.	.		$38 \cdot 83$
7.			$44 \cdot 31$
21.		27.76
22.		14.04
23.		$19 \cdot 61$.
1888.			
Jan. 18.		$17 \cdot 43$
20.		$12 \cdot 49$	\ldots
21.		$25 \cdot 10$
23.		37.52
26.		$29 \cdot 27$	
31.			$42 \cdot 15$
Feb. 23.		$26 \cdot 68$	
	Means.	25.47	45.01
	Probable error of means	$\pm 1 \cdot 38$	± 1.42

Weighted mean of means. 9h. 23m. $35 \cdot 24$ sec.
Probable error. $\pm 1 \mathrm{sec}$.
SUMMARY OF RESULTS OF OFFICE RE-COMPUTATION OF OGILVIE'S 1895-6 OBSERVATIONS.
$9 \mathrm{~h} .23 \mathrm{~m} .+$ tabulated seconds.

Date.		Moon's Limb.		
		I.	II.	
1895.		sec.	sec.	
Nov. 29.		$36 \cdot 65$		
30.		$42 \cdot 72$		
Dec. 1.		$22 \cdot 58$	$52 \cdot 11$	Rejected, moon clouded.
			$43 \cdot 57$	
6.			$40 \cdot 09$	
7.			$42 \cdot 51$	
1896				
Jan. 29.		$37 \cdot 85$	$48 \cdot 25$	
30.			- 37.48	
	Means...............	39.07	$42 \cdot 38$	
	Probable error of means.	± 1.24	± 1.21	
	Weighted mean of means. Probable error.		$\begin{array}{r} 9 \mathrm{~h} .23 \mathrm{~m} .40 .72 \mathrm{sec} . \\ \pm 0.8 \text { sec. } \end{array}$

${ }^{1}$ Re-computations by (Dr.) Otto J. Klotz on file at Dominion Observatory, Ottawa.

A comparison of the results of all observations by Messrs. McGrath and Ogilvie follows:-

Unratified Convention of 1897.

The boundary question then, at least as far as the 141st Meridian was concerned, remained quiescent until 1897, when a Convention was drawn up by which the Commissioners to be appointed were to survey and mark " so much of the 141st Meridian of west longitude as is necessary to be defined for the purpose of determining the exact limits of the territory ceded to the United States by the Treaty between the United States and Russia of March 30, 1867." The chief reason given in the preamble for the necessity of this demarcation was stated thus: " Whereas such determination has not hitherto been made by a joint survey as is requisite in order to give complete effect to the said Treaties, although independent observations and surveys have been conducted from time to time and are now being conducted by expert officers in the services of their respective Governments along the said Meridian of the 141st degree of west longitude." The Convention, however, failed to be ratified by the Senate of the United States.

The full text of this Convention follows:-

Convention ${ }^{1}$ Between Her Majesty The Queen of the United Kingdom of Great Britain and Ireland and the United States of America, for the Demarcation of so Much of the 141st Meridian of West Longitude as May be Necessary for the Determination of the Boundary Between Their Respective Possessions in North America.-Signed at Washington, 30th January, 1897.
Whereas by a Treaty between the United States of America and His Majesty the Emperor of all the Russias, for the cession of the Russian possessions in North America to the United States, concluded 30th March, 1867, the most northerly part of the boundary line between the said Russian possessions and those of Her Britannic Majesty, as established by the prior Convention between Russia and Great Britain, of 28-16 February, 1825, is defined as following the 141st degree of longitude west from Greenwich, beginning at the point of intersection of the said 141st degree of west longitude with a certain line drawn parallel with the coast, and thence continuing from the said point of intersection upon the said meridian of the 141st degree in its prolongation as far as the Frozen Ocean;

And whereas the location of said meridian of the 141st degree of west longitude between the terminal points thereof defined in said Treaties is dependent upon the scientific ascertainment of convenient points along the said meridian and the survey of the country intermediate between such points, involving no question of interpretation of the aforesaid Treaties, but merely the determination of such points and their connecting lines by the ordinary process of observation and survey conducted by competent astronomers, engineers and surveyors;

And whereas such determination has not hitherto been made by a joint survey as is requisite in order to give complete effect to the said Treaties, although independent observations and surveys have been conducted from time to time and are now being conducted by expert officers in the services of their respective Governments along the said meridian of the 141st degree of west longitude; resulting in the collection of scientific data and the establishment of stations on or near said meridian, of which
${ }^{1}$ This Convention failed to be ratified by the Senate of the United States.
the two Governments may avail themselves for the purpose of accomplishing the object of this Convention;

Her Majesty the Queen of the United Kingdom of Great Britain and Ireland, and the United States of America being equally desirous to provide for the removal of any possible cause of difference between their respective Governments in regard to the location of the said 141st meridian of west longitude, have resolved to conclude a Convention to that end, and for that purpose have appointed as their respective Plenipotentiaries:

Her Majesty the Queen of the United Kingdom of Great Britain and Ireland, His Excellency Sir Julian Pauncefote, G.C.B., G.C.M.G., Ambassador Extraordinary and Plenipotentiary of Great Britain; and

The President of the United States, Richard Olney, Secretary of State of the United States;
Who, after having communicated to each other their respective full powers, which were found to be in due and proper form, have agreed to, and concluded the following Articles:-

ARTICLE I.

Each Government shall appoint one Commissioner with whom may be associated such surveyors, astronomers, and other assistants as each Government may elect.

The Commissioners shall at as early a period as practicable proceed to trace and mark under their joint direction, and by joint operations in the field, so much of the 141st meridian of west longitude as is necessary to be defined for the purpose of determining the exact limits of the territory ceded to the United States by the Treaty between the United States and Russia of March 30, 1867.

Inasmuch as the summit of Mount St. Elias, although not ascertained to lie in fact upon said 141st Meridian, is so nearly coincident therewith that it may conveniently be taken as a visible landmark whereby the initial part of said meridian shall be established, it is agreed that the Commissioners, should they conclude that it is advisable to do so, may deflect the most southerly portion of said line so as to make the same range with the summit of Mount St. Elias, such deflection not to extend more than twenty geographical miles northwardly from the initial point.

ARTICLE II.

The data relating to the determinations already made at this time by either of the two Governments concerned, of points on or near the 141st meridian for the purpose of fixing its position, shall be submitted by each Government to the Commissioners, who shall decide which of the results of the determinations shall be adopted by them.

In case of disagreement between the Commissioners as to the correct geographical co-ordinates of one and the same point, determined by either of the two Governments separately, a position midway between the two locations in question, of the 141st meridian shall be adopted, provided the discrepancy between them shall not exceed one thousand feet.

In case of a greater discrepancy a new joint determination shall be made by the Commissioners.

ARTICLE III.

The location of the 141st meridian as determined hereunder shall be marked by intervisible objects natural or artificial, at such distances apart as the Commissioners shall agree upon, and by such additional marks as they shall deem necessary, and the line when and where thus marked, in whole or in part, shall be deemed to permanently define for all international purposes the 141st meridian mentioned in the Treaty of 30th March, 1867, between the United States and Russia and in the Treaty of February 28-16, 1825, between Great Britain and Russia.

The location of the marks shall be described by such views, maps and other means as the Commissioners shall decide upon, and duplicate records of these descriptions shall be attested by the Commissioners jointly and be by them deposited with their respective Governments, together with their final report hereinafter mentioned.

ARTICLE IV.

Each Government shall bear the expenses incident to the employment of its own appointees and of the operations conducted by them, but the cost of material used in permanently marking the meridian, and of its transportation, shall be born jointly and equally by the two Governments.

ARTICLE V.
The Commissioners shall diligently prosecute the work to its completion, and they shall submit to their respective Governments from time to time, and at least once in every calendar year, a joint report of progress, and a final comprehensive report upon the completion of the whole work.

The present Convention shall be duly ratified by Her Britannic Majesty and by the President of the United States of America, by and with the advice and consent of the Senate thereof, and the ratifications shall be exchanged at Washington or in London as soon as possible within twelve months from the date thereof.

In faith whereof, we the respective Plenipotentiaries have signed this Convention and have hereunto affixed our Seals.

Done in duplicate in Washington, the thirtieth day of January, one thousand eight hundred and ninety-seven.
$\begin{array}{ll}\text { [L.S.] } & \text { JULIAN PAUNCEFOTE. } \\ \text { [L.S.] RICHARD OLNEY. }\end{array}$

J. J. McArthur, D.L.S., 1902,

In 1902, owing to rumours of mining activity in the supposed vicinity of the boundary line farther south, the Ogilvie line was extended from the Sixtymile River to the flats at the head of Scottie Creek, a distance of about sixty miles by J. J. McArthur, Dominion Land Surveyor.

Convention of 1906.

The question of marking the boundary again remained in statu quo for some years, when the necessity of having the work done again impressed itself upon the two Governments, and a Convention was signed at Washington on April 26, 1906¹, and the ratifications were duly exchanged, also at Washington, on August 16 of the same year.

This Convention was drawn up on practically the same lines as that of 1897, except that it prescribed the use of the telegraph for determining a point on the 141st Meridian, and the extension of a north and south line through the point thus determined. It differed, however, from the Convention of 1897 in that no provision was made for the deflection of the southerly portion of the boundary to strike the summit of Mount St. Elias.

The Commissioners ${ }^{2}$ appointed by virtue of Article I were: for the United States, Mr. O. H. Tittmann, Superintendent of the United States Coast and Geodetic Survey, and for His Britannic Majesty, Dr. W. F. King, Chief Astronomer for the Dominion of Canada.

An important matter to be noted here is the establishment of a " neutral strip " along the boundary line by concurrent action of the Governments of Canada and the United States, although it can hardly be said to be the result of a Treaty or Convention between the two countries.

The matter first came up in a despatch from His Majesty's Ambassador at Washington, dated 30th October, 1907, submitting for the consideration of the Dominion Government a proposal by the United States Government that joint action be taken for the reservation of a strip of land 60 feet wide on each side of the Canada-Alaska Boundary Line under conditions similar to those resulting in the establishment of the

[^79]reservation along the Mexican Boundary Line by Proclamation of the President of the United States.

After considerable correspondence an Order in Council ${ }^{1}$ was passed on April 14, 1908, reserving from sale, lease, and entry, a strip 60 feet wide along the International Boundary in Yukon Territory, and making certain suggestions as to other parts of the boundary.

Also, on June 15, 1908, the President of the United States, by Proclamation, ${ }^{2}$ set apart as a public reservation, " all unpatented public lands of the United States lying within 60 feet of the boundary line."

As a reason for making this reservation, the Order in Council sets forth that "The Minister of the Interior submits that in his opinion such a reservation will be of great service in the protection of the revenue and in the enforcement of the law generally, and he therefore recommends that with a view to the prevention of the erection of buildings or permanent structures or works on or close to the boundary line, except railways, aqueducts, bridges, canals, ditches, and other works of a public character, and except buildings or permanent structures or works properly connected with such railways, aqueducts, bridges, canals, and other works of public character, he be authorized to reserve the land . . .", etc.

[^80]
APPENDIX III.

DESCRIPTIONS OF TRIANGULATION STATIONS, AND SKETCHES OF THE TRIANGULATION, ALONG THE 141st MERIDIAN FROM THE ARCTIC OCEAN TO MOUNT ST. ELIAS.

BETWEEN THE ARCTIC OCEAN AND THE PORCUPINE RIVER:

On a low flat knoll 5 miles west of the Boundary, one-half mile east of the landward end of Demarcation Point, and one-quarter mile inland from the Arctic Beach. Numerous small ponds and waterholes surround on the east, south, and west the slight rise of ground on which the station is situated. This is the northernmost signal erected in connection with the survey of the Boundary

Station Mark: Shallow drill hole in small rock set flush with the ground. Elevation 30 feet (approx.)

By the coast line the station is $1 \frac{3}{4}$ miles west of the Boundary and $3 \frac{3}{4}$ miles east of the landward end of Demarcation Point, and is on the edge and at the top of the tundra bank, which breaks off abruptly above the Arctic beach, less than 100 feet from tidewater. About one-tenth of a mile inland lie several water holes, and one-third of a mile southeast a deep gully in the bank above the beach drains several other ponds.
Station Mark: Shallow drill hole in small stone set flush with ground. Elevation 30 feet (approx.).
Ocean.

J. D. Craig, 1912

On a spit of land between Clarence Bay and the Ocean, on the west side of the Bay. A narrow spit runs across the mouth of the Bay for about $1 \frac{1}{2}$ miles, and is broken in one place only, about 350 feet east of the signal. Opening is about 40 feet wide. About 150 feet from opening on bay side is an Eskimo igloo. A little beach is between the igloo and the opening, and between the igloo and the ocean. Station is on a moss knoll about 20 feet higher than water and 50 feet from the ocean.

Station Mark: Drill hole in rock about 9 by 12 inches, set flush with the surface of the ground.
Ice.
T. Riggs, Jr., 1912.

On the Arctic coast, about $8 \frac{1}{2}$ miles east of station Ocean. The station is on the highest ground in the vicinity of a landlocked bay, with a very narrow entrance, and about 500 feet from the beach.

Station Mark: Drill hole in rock set flush with the ground. Tripod signal with targets.
Pass.
W. B. Gilmore, 1912.

In the British Mountains on one of the northerly ridges, which is $2 \frac{1}{2}$ miles east of the Line, and runs in a general north-to-south direction. About $1 \frac{1}{2}$ miles to the south is a pass used by the survey parties as the main trail to the head of Clarence River. The station is on the northernmost of a series of knobs which rise from the backbone of the ridge.

Station Mark: Drill hole in triangle cut in solid rock. Signal: Cairn without pole. Elevation, 4,200 feet (approx.). About one hour's gradual climb from a camp at the south foot of the ridge, and on the east side of the pass mentioned above. The willow used for firewood at this camp had to be packed from Malcolm River, several miles distant.

Borealis.

W. B. Gilmore, 1912.

On one of the highest peaks among the northerly ridges of the British Mountains. This mountain stands $4 \frac{1}{2}$ miles west of Line, between Clarence River on the east and a branch of Turner River on the west. The sides are bare, steep, and covered with slide rock. The station is located on the summit, which is a sharp edge of disintegrating rock. Looking north from the point there is a splendid panoramic view of the Arctic Ocean and coast line, including the mouth of Turner River, Icy Reef, Demarcation Point and Bay, Clarence Bay, and Herschel Island.

Station Mark: Drill hole in shallow triangle cut in a small rock. Signal: Cairn without pole. Elevation, 5,620 feet (approx.). About three hours' climb from a willow camping ground at a fork of the Clarence River, directly east of the mountain. Follow the branch stream to the head in a kettle on the northeast slopes of the mountains.

Aurora.
W. B. Gilmore, 1912.

At the summit of a high, bare, round-top hill among the northerly ridges of the British Mountains. It is 4 miles east of the Line, a few miles below the forks at the head of Malcolm River, and just east of that stream. Looking northeast in clear weather, Herschel Island is plainly visible from the station.

Station Mark: Drill hole in a triangle cut in a large rock. Signal: Cairn without pole. Elevation, 4,750 feet (approx.). About two hours' walk, including a gradual climb, from the main-trail camp on Malcolm River.

On the tundra flat between Clarence River and Craig Creek, about one-half mile east of Line, and 4 miles south of the Arctic beach and about the same distance southwest of Clarence Bay. A small lake lies one-half mile directly north of the station, which is on ground slightly higher than the surrounding flat.

Station Mark: Nail hole in large driftwood hub driven almost flush with ground. Elevation, 95 feet (approx.). An easy walk from any of the camps on the beach.

$$
\text { Bug. T. Riggs, Jr., } 1912 .
$$

On the rocky end of the ridge between Craig Creek and the stream which is just east of it. Is approximately 10 miles directly south of Clarence Bay.

Station Mark: Drill hole in rock with triangle. Cairn signal.
Mosquito. W. B. Gilmore, 1912.
On one of the last low foothills of the British Mountains, about 20 miles north of the main ridge, and on the border of the tundra flat which extends north 15 miles to the seashore. Just east of the station the Clarence River flows out from the hills into the flat. The station is about $5 \frac{1}{2}$ miles west of line.

Station Mark: Drill hole in rock set flush with ground. Signal: Cairn without pole. Elevation, 2,415 feet (approx.). About one hour's gradual climb from a willow camping ground on the main trail along Clarence River, where the latter flows past the east foot of the hill.

BACKHOUSE.

W. B. Gilmore, 1912.

On one of the higher foothills of the British Mountains, 5 miles east of Line. East of the station is a kettle in the hills, which has the appearance of a well-kept park, and from which a stream of considerable size flows off to the north-northeast, emptying into Clarence Bay 20 miles distant. This stream was named Craig Creek.

Station Mark: Drill hole in triangle cut in solid rock. Signal: Cairn with small pole and flag. Elevation, 3,620 feet (approx.). About two hours' gradual climb, from the camp at the east side of the pass at the head of Clarence River.

Grizzly.
W. B. Gilmore, 1912.

On a prominent mountain, 4 miles north of the main ridge of the British Mountains, and $1 \frac{1}{2}$ miles west of the line. It is the highest mountain in the range in the immediate vicinity of the Boundary, and is barren, rough, and steep, with many of the slopes covered with slide-rock and snow, and with numerous cliffs at the higher elevations. The station is situated on the backbone of the mountain, but not on its highest peak, the latter rising about 1 mile southeast of the point.

Station Mark: Shallow drill hole in small rock. Signal: Cairn without pole. Elevation, 6,565 feet (approx.). About one hour's walk plus $3 \frac{1}{2}$ hours' climb from the main-trail camp on the big willow patch at the forks near the head of Malcolm River. Climb was made up the northeast slopes into a saddle midway between the highest peak and the station, thence along the backbone of the Mountain. However, this route cannot be recommended.

Republic.
W. B. Gilmore, 1912.

On the main ridge of the British Mountains. The station is situated north of the head of Cottonwood Creek, and 4 miles west of the Line, on a peak, the character of which is very similar to that on which station Empire is located.

Station Mark: Rough drill hole in small rock. Signal: Cairn without pole. Elevation, 5,820 feet (approx.). About three hours' climb from a willow camping ground on one of the small branches at the head of Cottonwood Creek. Nearest timber about 6 miles east on Cottonwood Creek.

Empire.
W. B. Gilmore, 1912.

On the main ridge of the British Mountains. This ridge lies just north of Cottonwood Creek, a stream flowing east into the Firth. Crossing the Line in an east-to-west direction the ridge rises bare, steep, and rugged to an average elevation of 5,500 to 6,000 feet, and cliffs are encountered near the summit. The station is situated on a peak about 2 miles north of Cottonwood Creek and 3 miles east of the Line, and about the same distance west of the pass used by the survey parties as the main trail through the Range. The Arctic Ocean, 35 miles distant, is seen from the station over the intervening ridges to the north.

Station mark: Rough drill hole in rock. Signal: Cairn with pole and flags. Elevation, 4,530 feet (approx.). About $21 / 2$ hours' climb from a willow camping ground on a small branch of Cottonwood Creek, which heads at the foot of the ridge below the station.

Reaburn
W. B. Gilmore, 1912.

On a mountain which lies just north of Joe Creek, where the latter forks, about 6 miles west of Line. The mountain takes the form of a bare limestone ridge, running in a general northwest-to-southeast direction, and the signal is at the highest elevation near the middle of the ridge. The mountain is steep, and the north-east face bristles with great spires of stone protruding from the slide-rock which covers it. This slide-rock extends for a considerable distance down from the top on the southwest face also. The British Mountains are about 10 or 12 miles north.
Station Mark: Shallow drill hole in rock about 6 by 12 inches, set flush with surface of ground. Signal: Cairn. Elevation, 5,020 feet (approx.). About $21 / 2$ hours' walk plus two hours' climb from main trail camp of Joe Creek; climb the southwest side. Dry willow camping ground at foot of mountain on this side. Nearest timber about 4 miles east on Joe Creek.

Tub.
W. B. Gilmore, 1912 .

On the highest knob, and toward west end, of a round-top mountain which stands 1 mile east of line and 2 miles northeast of Station W_{1} of the Boundary. The mountain is a series of gradually rising moss and brush-covered benches, capped by several large knobs of disintegrating shale or slate. Past its east end Joe Creek, a large branch of the Firth, flows off to the northeast. The British Mountains lie about 10 or 12 miles to the north.

Station Mark: Drill hole in solid rock. Signal: A cairn with pole and target. Elevation, 4,725 feet (approx.). About $21 / 2$ hours' climb via the saddle, $11 / 4$ miles southeast of Station W_{1} of the Boundary from the main-trail camp at the forks of Joe Creek and its south branch. Climb the southwest slope.

Turner.
A. C. Baldwin, 1911.

On the highest mountain near the Boundary in the vicinity of the Firth River. It is about 12 miles north of the mouth of Mancha Creek, about 6 miles west of the main river, about 1 mile east of the Line, and about $11 / 2$ miles northeast of V_{1} of the Boundary. The mountain appears dome-shaped from the south and west, and is very rough and rocky on top.
Station Mark: Hole drilled in a rock in place. Cairn signal.

$$
\text { SIWASH. A. C. Baldwin, } 1911 .
$$

On a lone mountain which lies one-half mile west of the second large creek flowing into what is called the West Fork of the Firth River, and about 4 miles north of this fork.
Station Mark: Hole drilled in a rock in place. Cairn signal.

Riggs.

A. C. Baldwin, 1911 .

On a sharp, high peak, about 5 miles north of Mancha Creek and about three-quarters of a mile west of the Line. From the south the mountain is a very conspicuous landmark, as it appears very sharp and much higher than the surrounding mountains.
Station Mark: A hole drilled in a rock in place. Cairn signal.

$$
\text { Incog. C. Baldwin, } 1911 .
$$

On a low, round-top hill about 3 miles west of the main Firth River, about 7 miles north by east of the mouth of Mancha Creek, and about 3 miles east of the Line.

Station Mark: A hole drilled in a rock in place. Cairn signal.

$$
\text { Albion. A. C. Baldwin, } 1911 .
$$

On a high, razor-back mountain, about 2 miles north of the north branch of Firth River, and about 8 miles west of the main forks. The east end of the ridge slopes down to a small creek, the first above the forks.
Station Mark: A hole drilled in a rock in place. Cairn signal.

$$
\text { Silver. A. C. Baldwin, } 1911 \text {. }
$$

On a high range of mountains which lies between Mancha Creek and the Firth River. The east end of this range slopes down to the wide flat between the river and the creek. The station is on the highest rise of the east end of the ridge.

Station Mark: A hole drilled in a rock. Cairn signal.

$$
\text { Coral. A. C. Baldwin, } 1911 .
$$

On a round-top ridge between the east and middle forks of the northwest branch of the Old Crow. About 3 miles northwest of the station is a very low divide between the Old Crow waters and Firth River.
Station Mark: A hole drilled in a rock in place. Cairn signal.

$$
\text { Jim. . A: C. Baldwin, } 1911 .
$$

On a table-top ridge at the head of Ammerman Creek, a branch of Old Crow River. A prominent land-mark 3 miles to the southeast is a large lone rock. The station is about 1 mile east of the Line, and 3 miles southeast of T_{1} of the Boundary.

Station Mark: A hole drilled in a rock in place. Cairn signal.
Wee.
A. C. Baldwin, 1911.

In the flats of Old Crow River, about 2 miles above the mouth of Ammerman Creek, about 4 miles northwest of Ammerman Mountain, and about 7 miles above the Ammerman cabin, and about 200 yards from the west bank of the creek, in a small bunch of spruce.

Station Mark: A hole in a 4 -foot spruce hub, driven to frost.
Lynx. A. A. Baldwin, 1911.
On the highest point of Ammerman Mountain, about 11 miles north of the Old Crow River. The station is on a flat-top prominence and is about three-quarters of a mile southeast of S_{1} of the Boundary and of the pass through the range.

$$
\text { Watt. A. C. Baldwin, } 1911 .
$$

On Ammerman Mountain, about 10 miles north of the Old Crow River. The station is on the third prominence from the west end of the mountain, and is about 2 miles southwest of S_{1} of the Boundary.

Station Mark: A hole drilled in a rock in place. Cairn Signal.

$$
\text { YANKEE. A. C. Baldwin, } 1911
$$

On a low, bare ridge about 1 mile south of Old Crow River, and nearly due west of Ammerman's cabin on the river.
Station mark: A hole drilled in rock in place. Cairn Signal.
Doodle. . A. C. Baldwin, 1911.
On the wooded point of a southerly spur leading from the east end of Ammerman Mountain. This point is 8 miles due north of the mouth of Bilwaddy Creek, and is on the north edge of the Flats. The flrst branch of the Old Crow is about 3 miles east of the station.

Station Mark: A hole drilled in a rock set flush with the ground.
Billie.
A. C. Baldwin, 1911.

On a bald dome ridge about 3 miles north of Bilwaddy Creek and about 6 miles west of the point where Old Crow River crosses the line.

Station Mark: A hole drilled in a rock in place. Cairn signal.

Wad. A. C. Baldwin, 1911.

In the Old Crow Flats, about one-half mile east of the river, and about $11 / 2$ miles northwest of the mouth of Bilwaddy Creek. There is a small lake just south west of the signal.
Station Mark: A cross cut in a 3 -foot hewn piece of spruce.

$$
\text { Pasture. A. C. Baldwin, } 1911 .
$$

On the northeast end of a plateau ridge that lies about 6 miles west of the Line. The station is about 3 miles south of Bilwaddy Creek.

Station Mark: A hole drilled in a rock in place. Cairn signal.

> Spud. , A. C. Baldwin, 1911.

On what is known as "Potato Hill," a very conspicuous bare knob rising from the Flats of the Old Crow. This hill is about seven-tenths of a mile west of the Line, and 6 miles south of Bilwaddy Creek.

Station Mark: A hole drilled in a stone set flush with the ground. Cairn signal.

$$
\text { Tip. A. C. Baldwin, } 1911 .
$$

On a rocky plateau ridge, about $21 / 2$ miles west of station R_{1} of the Boundary. An old Indian grave is on the southwest spur of the ridge, just above timber-line.
Station Mark: A hole drilled in a rock in place. Cairn signal.

$$
\text { Cherry. A. C. Baldwin, } 1911 .
$$

About 14 miles south of Bilwaddy Creek, on the range bordering the Old Crow Flats on the west, on a high dome about 6 miles west of the Line. This dome is on the same range as station Comb, and is about 10 miles north of it. About 3 miles west of the station are several higher peaks of the ridge.
. Station Mark: A hole drilled in a rock in place. Cairn signal.

$$
\text { Trap. ., A. C. Baldwin, } 1911 .
$$

On a low, lone ridge about 3 miles east of the Line, and about 10 miles south of Potato Hill. The station is on the highest point of this ridge.
Station Mark: A hole drilled in a stone set in the ground.

$$
\text { Old Crow. A. C. Baldwin, } 1911 .
$$

On a long, lone ridge included between Surprise and Schaefer Creeks. The station is about 10 miles north of Q_{1} of the Boundary, and $11 / 2$ miles east of the Line. To the north the ridge slopes down to the Old Crow Flats. Station is one-quarter mile east of the highest point of the ridge.

Station Mark: A hole drilled in a rock in place. Cairn signal.
Сомв.
A. C. Baldwin, 1911.

On a high rocky prominence of the range to the west of the Old Crow Flats. It is the highest point in the vicinity, and is about 5 miles west of the Line.
Station Mark: A hole drilled in a rock in place. Cairn signal.
Tiny.
A. C. Baldwin, 1911.

On a long, flat, low ridge, about 5 miles northwest of Q_{1} of the Boundary. To the east the ridge slopes down to a wide creek valley which is south of the Old Crow Flats. Station is a little north of the highest point of the ridge.

Station Mark: A hole drilled in a rock in place. Cairn signal.

$$
\text { Doc. A. C. Baldwin, } 1911 .
$$

On a dome mountain about 2 miles north of Rapid River, and $31 / 2$ miles southeast of Q_{1} of the Boundary. There is a second dome similar in appearance about 2 miles northeast of Station Doc.

Station Mark: A hole in the center of a triangle cut in rock. Cairn signal.
Barren A. C. Baldwin, 1911.
On a plateau ridge, about 6 miles north of Rapid River, and $61 / 2$ miles west of the Line. This plateau forms a divide between the waters of the Old Crow and Rapid Rivers.

Station Mark: A hole drilled in a rock in place. Cairn signal. To reach the signal the best route is to follow the small creek that empties into Rapid River at the cache about two miles below the line-crossing.

$$
\text { GUN. A. C. Baldwin, } 1911 .
$$

On the divide between Sunaghun Creek and Rapid River. It is $11 / 2$ miles northeast of two prominent rocky pinnacles, and about $31 / 2$ miles northeast of P_{1} of the Boundary, and on the same ridge.

Station Mark: A hole drilled in a rock in place. Cairn signal.
Orphan.
A. C. Baldwin, 1911.

On a round-top ridge, about 4 miles west of the Line, and 2 miles south of Rapid River. The ridge connects with the east-and-west ridge forming the divide between Porcupine and Rapid River waters. Station can be reached by taking the spur to the north of station Sun.

Station Mark: A hole drilled in a rock. Cairn signal.

Sun.

A. C. Baldwin, 1911.

On the r
Boundary.
Boundary.
Station Mark: On a sharp pinnacle of rock, and is a hole drilled in same. Cairn signal.

Cone.

W. B. Gilmore, 1910 .

On an outcropping ledge of shaly rock, the highest part of a prominent conical knob, which rises from the backbone of a ridge 5 or 6 miles northwest of Rampart House. The ridge runs in a general east-to-west direction, the east spur running down to Sunaghun Creek, the south slope rising from a muskeg swamp which drains into that stream and separates this ridge from Sunset ridge. Reached by taking the trail which leads north from Turner's Northwest Base: at the first fork of the trail on the plateau, keep to the west, thus passing west of the Wan ridge. After proceeding about $31 / 2$ miles on the plateau the trail again forks near a small, lone, dead tree. The west fork swings down into the valley of the Sunaghun, crosses that stream and runs up the east point of the ridge directly toward the station.
Station Mark: A very shallow $1 / 2$ inch hole within a triangle cut in a rather small stone set at the highest point of the above-mentioned ledge. Cairn and pole.

NASSAU. Which W. B. Gilmore, 1910 .
On a mountain which rises prominently from the plateau, about 5 miles northeast of Rampart House. Except on the lower slopes, the mountain is bare of timber. Its top is a circular flat, about 60 yards in diameter, and the station is about 15 yards north of its center. Reached by taking the trail which leads north from Turner's Northwest Base. At the first fork of the trail on the plateau, keep to the east, thus reaching Wan Ridge. Passing over this, there is a steep descent into a mile-wide valley, somewhat swampy, filled with much brush and considerable timber, and drained by a small stream running south. Crossing this valley the ascent of the west slope of the mountain leads directly to the station.
Station Mark: $1 / 2$-inch drill hole in a triangle cut in a stone about 10 inches by 20 inches by 10 inches in size, set flush with the ground. Cairn and pole signal.

June.
A. C. Baldwin, 1911 .

On a bare, flat-topped mountain, 3 miles north of Rampart House, and one-half mile east of the Line.

$$
\text { Wav } 2 . \quad J . \text { H. Turner, } 1891 .
$$

W. B. Gilmore, 1910 .

On the south slope of a hill about $21 / 2$ miles almost due north of Rampart House. The hill is bare of timber and brush, and rises from the wooded plateau south of it in four knolls of increasing elevation. The station is on the third knoll. At the point, found demolished cairn, the remains of Turner's station. Could find no station mark of 1890. Reached by taking the well-defined Indian trail which leads from Turner's Northwest Base up the steep hill directly north of it. Where the trail forks on the plateau, keep to the east. After leading through the woods it swings still farther to the east directly to the station. Total distance probably $31 / 2$ miles.

Station Mark: $1 / 2$-inch drill hole in small stone set flush with the ground. Cairn.

Porcupine.

F. Lambart, 1911.

On summit of hill on which is station Sunset 2.

Sunset 2. $\begin{array}{r}\text { J. H. Turner, } 1891 . \\ \text { W. B. Gilmore, } 1910 .\end{array}$

On the southeast slope of the first ridge west of Sunaghun Creek. In the vicinity the ridge is practically bare of timber and brush. At the point, found demolished cairn and part of a flag pole, the remains of Turner's station. Could find no station mark of 1890 . Reached from Rampart House by climbing hill just west of the mouth of Sunaghun Creek, going west about 1 mile through the timber on the plateau, then swinging northwest up the ridge. Total distance, probably $31 / 2$ miles.

Station Mark: A $1 / 2$-inch drill hole in a small rock, set flush with ground. Cairn.
Astronomic Station. - J. H. Turner, 1890.
On the slope of the hill rising from the north bank of the Porcupine River, and within 100 yards of Rampart House in a northeasterly direction. The station is a concrete pier 3 feet high.

North Monument. J. H. Turner, 1890.

At the top of the hill just west of the mouth of Sunaghun Creek, and plainly visible from Rampart House. The monument was originally a crib of logs, which have rotted and fallen apart.

Station Mark: Shallow $1 / 2$-inch drill hole in small flat stone set about 1 inch below the surface of the ground at the top of the remaining mound.

Northwest Base. J. H. Turner, 1890.
On the west bank of the ravine running south into the Porcupine River and separating the Indian village from the post buildings at Rampart House. Is within 50 yards of Turner's old building, in a westerly direction.

Station Mark: A shallow hole in some lead or solder in the centre of a flat reddish stone set flush with the ground.

BETWEEN THE PORCUPINE AND YUKON RIVERS.

Fire Hill. $\begin{array}{r}\text { J. H. Turner, } 1890 . \\ \text { W. B. Gilmore, } 1910 .\end{array}$
On the top of the bare limestone precipice which rises from the river due south of Rampart House, and Edmonds Island and plainly visible from the former. Just back of the hill is a deep ravine, which separates it from the plateau south of it. Station Mark: An earthenware jar 6 inches in diameter set flush with ground by Turner in 1890. Reset by Gilmore, 1910. Small cairn.

Flat 2.
J. H. Turner, 1890.
W. B. Gilmore, 1910.

On the top of the bluff on the south side of Porcupine River, about $1 \frac{3}{4}$ miles southwest from Rampart House. At the point, found remains of Turner's large tripod signal, but no station mark. Reached, after crossing the river, by climbing to the plateau via the first point west of the mouth of Iron Creek, thence keeping about 50 yards back from the break of the cliffs, go west about 450 or 500 yards.

Station Mark: $\frac{1}{2}$-inch drill hole in a small rock set flush with the ground.

Porcupine River, East Base. D. W. Eaton, 1911.

Is a concrete block 14 inches by 12 inches by 12 inches, set on concrete foundation in frozen ground (black muck), and the point is marked by cross on copper strip set in block. Top of block flush with surface of ground. It is 1 mile northeast of Canalaska Mountain and one-quarter mile east of the Boundary.

Porcupine River, West Base.
D. W. Eaton, 1911.

Is a flinty block 12 inches by 11 inches by 14 inches, set flush with the surface. The point is marked by a cross on a copper bolt set in a drill hole, and cemented in. It is surmounted by a flag pole, 16 feet long, and a cairn 4 feet high. It is on the highest part of the hill to the westward of Canalaska Mountain.

Canalaska or Boundary Mountain.
W. B. Gilmore, 1910.

From Rampart House this mountain shows due south, rising above the ramparts of the river at a distance of $3 \frac{1}{2}$ miles. The station is at the highest point of a backbone of rock which slopes abruply to the west. Reached by crossing the river, then climbing to the plateau via either the first point west of Iron Creek or by following up the course of the creek itself, and thence due south to the mountain.

Station Mark: Shallow $\frac{1}{2}$-inch drill hole in the solid rock. Cairn and pole signal.
Rampart.
W. B. Gilmore, 1910 .

On the highest knob of a ridge lying just east of Canalaska Mountain. The knob, which rises in the form of a dome of shattered rock from moss-covered ridge, is about 2 miles east of the summit of Canalaska Mountain, and about 4 miles a little east of south of Rampart House. There is no timber or brush in the immediate vicinity. Reached by crossing the river above the mouth of Bush Creek, climbing to the north end of the ridge and following along the west slope or top to the station.

Station Mark: $\frac{1}{2}$-inch drill hole in a triangle cut in solid rock, which projects just above the surface of the thin soil and moss. Cairn and pole signal.

Chasm.
W. B. Gilmore, 1910 .

About 5 miles southwest of Canalaska Mountain on the top of the higher and more southerly of two knobs which rise from the low ridge just west of Chasm Creek. The hill top is bare, but there is timber about one-quarter mile to the east. Reached after crossing the river, by climbing to the plateau via the point west of and about 100 yards upstream from the mouth of Lignite Creek. Thence the trail leads about 2 miles through the saddle between Canalaska Mountain and the knob west of it; thence southwest about 3 miles, thus crossing Chasm Creek well above its mouth, and leading into the saddle between the knobs on the ridge on which the station is located; and thence south to the higher knob. Keep away from the mouth of Chasm Creek.

Station Mark: Shallow $\frac{1}{2}$-inch drill hole within a triangle cut in a stone about 1 foot square and 4 or 5 inches thick. This is set flush with the ground. Tripod and pole signal.

Lake.
W. B. Reaburn, 1910.

About $4 \frac{1}{2}$ miles east of the Line on the top of the southwest point of a ridge $7 \frac{1}{2}$ miles from Canalaska Mountain, from which it bears about southeast. The ridge is timbered, but is bare in the vicinity of the station, with outcroppings of limestone. About 1 mile southeast of the point is a large lake, with a chain of small lake to the northeast of it.

Station Mark: $\frac{1}{2}$-inch drill hole within a triangle cut in a rock about 1 foot square and half as thick; this was set flush with the ground. Cairn and pole signal.

Junction 2.
W. B. Reaburn, 1910.

About 4 miles west of the Line on the highest point of the rather flat top of a bare ridge about 8 miles from Canalaska Mountain, from which it bears about south-southwest. To the south is quite an extensive valley, which apparently drains northwest.

Station Mark: $\frac{1}{2}$-inch drill hole within a triangle cut in a stone of triangular shape, about 1 foot on a side and 1 foot in thickness. This was set nearly flush with the ground.

Tit.
W. B. Reaburn, 1910.

On a small rocky ledge on a grassy hill. about $2 \frac{1}{2}$ miles east of the Line, and 4 miles northeast of station N_{1} on the same ridge.

Station Mark: $\frac{1}{2}$-inch drill hole in a triangle cut in solid rock.
Kite.
W. B. Reaburn, 1910.

On a limestone ledge on an east-and-west ridge, which has several outcroppings to the west and around the station. It is about 7 miles east of station N_{1} of the Boundary, and 2 miles east of a large stream which flows into the Porcupine east of the Line.

Station Mark: $\frac{1}{2}$-inch drill hole in a triangle cut on stone set in ground by the side of a rotten ledge. Cairn signal. Good feed on west side of stream, 2 miles west of signal.

Arch. 2.
W. B. Reaburn, 1910.

On the highest point on a limestone ridge, about 3 miles north of Salmontrout River, $3 \frac{1}{2}$ miles west of the Line, about 4 miles south of west of station N_{1} of the Boundary and on the same ridge, and about $\frac{1}{2}$ mile north of some limestone dykes, one of which has an arch in it.

Station Mark: $\frac{1}{2}$-inch drill hole in a triangle cut on a stone set in ground flush with surface. Cairn signal,
Lone.
W. B. Reaburn, 1910.

On a lone hill rising from a flat country, about $4 \frac{1}{2}$ miles west of the Line, and 1 mile west of Salmontrout River. There are small tributaries to the north and south, both flowing east into the Salmontrout. There are several limestone ledges cropping out on the north side and near the top of hill.
Station Mark: $\frac{1}{2}$-inch drill hole in solid rock, 2 or 3 inches under the surface. Cairn.
Salmon.
T. Riggs, jr., 1910.

On the highest point of the flat whïte limestone ridge running across the country between Black and Salmontrout Rivers, about $3 \frac{1}{2}$ miles east of Line. Drainage on the southeast flows towards Black River, and on the west into the Salmontrout, which is plainly visible. Directly north the hills run out some distance, while on the west they drop off more quickly into the valley. Hill is precipitous on all sides except the west, where it slopes down to a low, rocky saddle connecting with the rolling high lime plateau. On the south side is a creek running southeast, whose bed at a distance looks like snow, on account of whiteness of rock.
Station Mark: drill hole in triangle in solid limestone cropping through the broken top, and slightly raised above it. Cairn and pole signal.

Storm.
T. Riggs, jr., 1910.

On a high, flat-top limestone ridge about 4 miles west of the Line. The same ridge connects with station Fort. The drainage to the north and west flows into the Salmontrout, to the east and southeast into the Black River, and to the southwest into Rat River (?). Top of hill is covered with grass and large limestone rocks.
Station Mark: Drill hole in triangle on large limestone rock, about $4 \frac{1}{2}$ feet square. Cairn signal.
Mesa.
T. Riggs, jr., 1910.

On a broad, bare plateau, about 6 miles east of Line. Plateau has three humps on it, and the station is on the center and highest, a broken rock summit. On center of ridge to west and southwest is a peak like the Matterhorn. Northeast a broad river from lakes flows southwest. Southeast of station another small lake feeds a creek. Probably all Black River water.

Station Mark: Drill hole in exposed boulder. Cairn signal.

Fort.
 T. Riggs, jr., 1910.

On a high, bare, broken-rock butte, superimposed on a white limestone ridge, about 3 miles west of the Line and 6 miles southwest of M_{1} of the Boundary. On the west the waters seem to drain into Rat River, while on east the water flows into Black River. At a distance the hill has the appearance of a black, terraced fort.

Station Mark: Drill hole in triangle in large slab of quartz, nearly flush with the ground. Cairn signal.
Trouble.
T. Riggs, jr., 1910.

About $4 \frac{1}{2}$ miles east of the Boundary on Black River, on the ridge east of the first creek coming in from northeast of creek near the Boundary. The point of the ridge has knobs separated by a low saddle. Station is on northern and higher knob, which is bare of trees and covered with moss and grass. Fine slab slate underlying moss.

Station Mark: Drill hole in triangle in slab set flush with the ground. Cairn and pole signal.

White.

T. Riggs, jr., 1910.

On a prominent castellated knob on white limestone spur-ridge of the main north-and-south ridge. Spur is the first white limestone ridge north of Black River. Station is about $4 \frac{1}{2}$ miles west of the Line, and there is a higher flat-top part of the spur to the southeast of station. Water seems to drain north from near station.

Station:Mark: Drill hole in triangle in rock.
Circle. T. Riggs, jr., 1910.
About 5 miles west of the Boundary, on the bare summit of a hill between the forks of Black River and a large tributary coming in from northwest. Timber on east side of hill is burnt.

Station Mark: Drill hole in triangle in slab of stone one foot square, set flush with the ground. Cairn and pole signal.
Arctic. T. Riggs, jr., 1910
About 3 miles east of the Line on a high, bare, rocky mountain, east of flats passed by two main forks of Black River. Peak is one of the two most prominent in this part of the country. To north is the wide Black River valley. A little north of east of J_{1} of the Boundary; the summit is badly shattered lime rock covered with lichen.

Station Mark: Drill hole and triangle in large slab of rock. Cairn signal.
Igloo. T. Riggs, jr., 1910.
About 5 miles west of the Line on the summit of a low timbered ridge, running northeast and southwest on the last knob before running out into Black River flats. A spur ridge runs north for about one-quarter mile from station. It is the last ridge to be noticed between the higher bare ridges and the main fork of the Black. A small creek heads directly north of the station, following contour of ridge. Directly west lie the big flats.

Station Mark: Drill hole within triangle in exposed piece of schist.

Curve.
T. Riggs, jr., 1910.

About 2 miles north of the mountain at the head of Racquet Creek on a bare, rounding hogback, about $2 \frac{1}{2}$ miles east of the Line. Forks of Black River run from it in all directions. Cannot be further described without names of creeks. Station Mark: Drill hole and triangle in flat rock about a foot square, sunk in flush with ground. Cairn signal.

$$
\text { Fishing. A. I. Oliver, } 1910 .
$$

Two miles north of Teecan Creek, and three-quarters of a mile west of the Line near the north end of the more southerly of two high hogbacks 1 mile apart; the country drops off precipitously to west. The north hogback is considerably higher than the other. Good feed in valley 1 mile to south.

Station Mark: $\frac{1}{2}$-inch drill hole surrounded by chiselled triangle in rock 14 inches by 10 inches by 10 inches, set flush with surface. Signal is 5.3 foot cairn, with center pole.

Low. $\begin{aligned} & \text { A. I. Oliver, } 1910 .\end{aligned}$
About $5 \frac{1}{2}$ miles west of the Line and 3 miles north of Orange Creek, on the summit of the low end-point of a low burnt ridge, which drops off rapidly from the station to the west into a broad point about 1 mile east of station on the same burnt ridge. Orange Creek is about 3 miles south of the station.

Station Mark: $\frac{1}{2}$-inch drill hole in rock in place, which is 16 inches by 18 inches by 36 inches, and protrudes about 10 inches above the ground. The drill hole is shattered on the west side and is surrounded by a triangle. Tripod and pole signal.

Stripe.
A. I. Oliver, 1910.

On the summit of a high loose-rock mountain. It is the highest peak within several miles, and is about 2 miles northeast of I_{1} of the Boundary, and 1 mile east of the Line. There is excellent feed in canyon immediately south of station.

Station mark: $\frac{1}{2}$-inch drill hole in rock in place. Signal: 6 -foot cairn with center pole.

$$
\text { Tom. Oliver, } 1910 .
$$

About $5 \frac{1}{2}$ miles west of the Line, on the summit of the end point of a ridge running west from higher group of hills. Hill is smooth and open, and descends to main creek 4 miles west. Two miles south, on the creek running west, there is good feed.

Station Mark: $\frac{1}{2}$-inch drill hole in stone 12 inches by 12 inches by 16 inches. Drill hole is surrounded by a triangle cut in stone. Signal is a 6 -foot cairn, with center pole.

Blue.
About $2 \frac{1}{2}$ miles west of the Line, and 5 miles north of Siwash Creek on a sharp, open peak, which is one of a number of about the same height.

Station Mark: $\frac{1}{2}$-inch drill hole in stone 8 inches by 14 inches by 12 inches, set flush with the ground. Signal is 3.6 foot cairn with center pole.

BENCH.
About 7 miles west of the Line on the end point of a ridge running north from the main divide between Kandik River and Siwash Creek. The point is open and rises 800 feet above creek to east. It is easily reached from either side. Good feed on creek, 2 miles east of station.

Station Mark: $\frac{1}{2}$-inch drill hole in stone 16 inches by 12 inches by 12 inches, which is set flush with surface of ground.
Kandik.
A. I. Oliver, 1910 .

About $2 \frac{1}{2}$ miles east of the Line on a small knob of a long, open ridge, about 6 miles north of Kandik River. There is a deep saddle directly north of station, about one-half mile distant. There are higher points on the ridge, about 2 miles south.

Station Mark: $\frac{1}{2}$-inch drill hole in slab of stone 15 inches by 15 inches by 10 inches. Signal is $5 \cdot 7$ foot cairn, with center pole.

Fire.
A. I. Oliver, 1910

About 6 miles west of the Line on a low, bare knob, about 2 miles north of Kandik River. It is the only bare knob in the vicinity. There are higher timbered hills about 2 miles southeast of the station.

Station Mark: $\frac{1}{2}$-inch drill hole in stone 15 inches by 15 inches by 12 inches.
SEAL.
On a high, isolated rocky butte about 5 miles south of Kandik River, and 5 miles east of the Line. Peak is the most northerly point of a group of hills. The country to the west is low, smooth, and timbered.

Station Mark: $\frac{1}{2}$-inch drill hole in stone 15 inches by 18 inches by 18 inches. Signal is cairn, 4.9 feet high, with pole. Good camping place in meadow 2 miles southwest of station.

$$
\text { Change. A. I. Oliver, } 1910 .
$$

About $4 \frac{1}{2}$ miles west of the Line on an open, flat-top hill, which is the highest within 5 miles. The hill drops off to the north to Big Sitdown Creek, a fork of Kandik River.
Station Mark: $\frac{1}{2}$-inch drill hole in stone 12 by 12 by 12 inches. Drill hole is surrounded by triangle.

$$
\begin{aligned}
& \text { Scratch. } \\
& \text { On the summit of one of a group of low hills, about } 8 \text { miles northeast of Indian Grave Mountain. } 1910 \text {. The hill is covered with } \\
& \text { moss and grass, giving it a yellow appearance. It is about one mile north of the divide between Kandik River and Nation } \\
& \text { River drainage. Good camping place in meadow one-half mile south of station. } \\
& \text { Station Mark: } \frac{1}{2} \text {-inch drill hole in a rock in place. Drill hole is surrounded by triangle cut in the rock. Cairn, } 4 \cdot 7 \text { feet } \\
& \text { high. }
\end{aligned}
$$

Union.

On the summit of a high, prominent peak about $5 \frac{1}{2}$ miles south of Big Sitdown Creek, and $1 \frac{1}{4}$ miles north of Indian Grave Mountain, which is slightly higher. The peak is of loose-rock formation, and comes to a narrow ridge at the top and runs east and west for 200 yards. There is a deep canyon between the two peaks. Station G_{1} of the Boundary is 1.3 miles east of south of station. The main boundary trail runs around the base of mountain on the west side.

Station Mark: $\frac{1}{2}$-inch hole in slab of rock in place. Drill hole is surrounded by triangle.
Halley.
A. I. Oliver, 1910.

About 2 miles west of the Line on an isolated, open, rather high mountain, 2 miles southwest of Indian Grave Mountain. Peak is about $3 \frac{1}{2}$ miles north of Nation River. The Boundary pack-trail traverses the west slope nearly half way up. Easily reached with pack-animals. Good feed in valleys to north and east.
Station Mark: A small hole in stone 12 by 16 by 10 inches, set flush with ground. Signal is a pole in a stone cairn.

> Сомет.

About 8 miles east of the Line on the more southerly of two open points, which rise about 1,000 feet above the immediately adjacent drainage. It is due west of the center of a long, dark hogback, which runs north and south and is one mile to the east and much higher than station. The point is $3 \frac{1}{2}$ miles north of Nation River. It is easily reached with pack-animals. Fine grass and good camp in head of draw, 1 mile to southeast.
Station Mark: A round hole drilled half-inch deep in a stone 10 by 14 by 12 inches set flush with the ground, with a triangle cut around the hole. Signal is a pole in a cairn.

$$
\text { Lost. . A. I. Oliver, } 1910 .
$$

About 6 miles east of the Line on a high open, dark, rocky point between Jungle and Ettrain Creeks. There is a prominent higher yellow point $1 \frac{1}{2}$ miles to east, across a deep saddle.
Station Mark: Cross cut on rock in place. Cairn and pole signal.
Yellow.
A. I. Oliver, 1910.

On a low knob of an east-and-west ridge, between Jungle and Ettrain Creeks, and about $1 \frac{1}{2}$ miles west of the Boundary. There is abundant feed and good camp on south side of ridge. Timber has been burned on south side of ridge, which is visible from Station F_{1} of the Boundary.
Station Mark: A cross on rock in place, and surrounded by a small triangle cut in rock.
Casca.
A. I. Oliver, 1910.

About $1 \frac{1}{2}$ miles west of the Line and $1 \frac{3}{4}$ miles north of Tindir Creek on the summit of a badly shattered rock mountain. On the same ridge as, and about $1 \frac{1}{2}$ miles west of, F_{1} of the Boundary.

Station Mark: $\frac{1}{2}$-inch drill hole in a triangle cut on a large slab of rock. Slab is about 6 feet by 3 feet by 1 foot. Cairn and pole signal.

Lime.

A. I. Oliver, 1910.

On the summit of a loose-rock mountain about 3 miles east of Monument No. 98. The mountain is rounding at the top, and has a very dark appearance. Tindir Creek, a fork of the Nation River, heads about 3 miles southeast of station, and runs in a northwest direction. Another fork flows past the foot of the mountain on the north side, and also flows northwesterly.

Station Mark: $\frac{1}{2}$-inch drill hole in a triangle cut on a rock 2 feet by 1 foot by $1 \frac{1}{2}$ feet. Cairn and pole signal.

$$
\text { Nation. G. Clyde Baldwin, } 1909 .
$$

On a lone ridge about 4 miles west of E_{1} of the Boundary; the ridge has two rocky prominences on east slope.
Station Mark: A cross in rock in place over which is a short pole set in a 3 -foot cairn.
View, N.E. G. Clyde Baldwin, 1909.
Located on the south end of the eastern part of a high ridge, $2 \frac{1}{2}$ miles east of E_{1} of the Boundary.
Station Mark: Cross in rock in place, and cairn.
Mush. G. Clyde Baldwin, 1909.
About 4 miles west of the Line on a long, bare ridge, about 1 mile north of Cathedral Creek, the second large creek north from Tatonduk River (Sheep Creek).

Station Mark: A cross in rock.

$$
\text { Grub. G. Clyde Baldwin, } 1909 .
$$

On a summit of the first hill north of Cathedral Creek and east of the second creek emptying into that stream from the north, reckoning eastward from the Boundary.

Station Mark: A cross on a rock.

Slide.

G. Clyde Baldwin, 1909.

On a round, bare-top hill northeast of station Back, and $1 \frac{1}{2}$ miles south of Cathedral Creek. The station is only a few meters west of the Boundary.

Station Mark: A cross cut in rock. Small rock cairn.

$$
\text { Back.. G. Clyde Baldwin, } 1909 .
$$

About 1 mile east of the Line on the summit of the highest of a group of very rocky hills forming a divide between the waters of Cathedral and Hard Luck Creeks.
Station Mark: A cross cut in rock. The signal is a pole set in a good-sized cairn.
РАСк.
G. Clyde Baldwin, 1909.

Two miles west of the Line on a rocky peak at the northwest end of a high divide separating the waters of Hard Luck and Cathedral Creeks.
Station Mark: A cross cut in rock. The signal is a pole set in a good-sized cairn.

$$
\text { GAME. G. Clyde Baldwin, } 1909 .
$$

Located about 1 mile east of the Line and $2 \frac{1}{4}$ miles north of Hard Luck Creek near the southern end of a long sawtooth ridge which lies between two forks of the creek which empties at Monument No. 102 into Hard Luck Creek. A deep narrow canyon is another distinctive feature of this smaller creek, and is about 1 mile south of the station.

Station Mark: A drill hole surrounded by three arrows.

Barney. G. Clyde Baldwin, 1909.

Located about $3 \frac{1}{2}$ miles east of the Line on the highest knoll of the long ridge, which is included between the upper forks of Hard Luck Creek.
Station Mark: A cross in a rock set flush with the ground.
Hi-yu.
G. Clyde Baldwin, 1909 .

On the summit of the first peak northwest of station Skook. This peak is also very high and rocky, but is somewhat lower than Skook.

Station Mark: Single pole with a cairn.

$$
\text { SQuaw. .o . Clyde Baldwin, } 1909 .
$$

About one-quarter mile west of the Line, and $4 \frac{1}{2}$ miles north of Tatonduk River, on the highest point of the divide between the east and west forks of Limestone Creek, and about one-quarter mile southwest of C_{1} of the Boundary.
Station Mark: A roughly cut cross in the rock. Signal is a single pole set in a cairn.

> Red. ... G. Clyde Baldwin, 1909,

On the summit of a hill on the north side of Tatonduk River, about $2 \frac{1}{2}$ miles west of the Boundary. On the south face of this hill are numerous red cliffs.

Station Mark: A cross cut in rock. To reach it, take the pack-trail from the elevated cache on the north bank of the Tatonduk, almost to the top of the saddle; then turn to the left (west) and follow the crest of the divide to the signal.

CASTLE. : G. Clyde Baldwin, 1909 .
On a high mointain about 3 miles north of the forks of Tatonduk River. The mountain may easily be recognized by its rocky appearance, and also by a large natural archway in a pinnacle of rock on the west slope. To reach the station the best route is to follow an old prospector's trail along the bank of Tatonduk River, as far as the first small creek above the canyon; then follow this creek to the base of the station. The highest point of the mountain is a mass of unstable rock, and for this reason the station was not placed there, but about 200 feet south-southwest.

Station Mark: A cross in a rock in place.
Crow.
G. Clyde Baldwin, 1909 .

Located on high knob on the north side of the river at the bend toward Twentymile. Station Mark: Cross on rock.
Chief.
G. Clyde Baldwin, 1909.
About $1 \frac{3}{4}$ miles west of the Line on the divide between Tatonduk and Yukon Rivers, about 3 miles northwest of B_{1} of the Boundary.
Station Mark: Cut in a soft conglomerate rock in place. This rock chips and wears so easily that in future the reference marks should be used in recovering this station provided the signal cairn is not standing.

> HUG. G. Clyde Baldwin, 1909.

Located on a high mountain between Tatonduk and Yukon Rivers, and about 200 feet from the point where the Line crosses the ridge. To reach this station follow the trail from the mouth of Shade Creek.

Station Mark: Small cairn, centered over a cross in rock.
Strata.
G. Clyde Baldwin, 1909.

About 11 miles below Eagle, Alaska, on the summit of Calico Bluff, on the west side of Yukon River.
Station Mark: Cross cut in rock.
Bush.
G. Clyde Baldwin, 1909.

About 3 miles below Eagle, Alaska, on the highest ridge north of Eagle Peak, and west of the mouth of Last Chance Creek on west side of Yukon River. To reach station, go up Boulder Creek to base of hill on its northwest bank.

Station Mark: Hole in rock in place.

$$
\text { Blow. G. Clyde Baldwin, } 1909 .
$$

About $1 \frac{1}{2}$ miles east of the Line on the ridge between the headwaters of Last Chance and Shade Creeks. Is on high peak, which has a sharp drop-off on the east side.

Station Mark: Cross in rock.
LONE. G. Clyde Baldwin, 1909.
About $1 \frac{1}{2}$ miles east of the Line on the highest conical peak just north of Eagle Creek. Take wood trail from near the mouth of Eagle Creek to wood camp, and then go up small creek bottom.

Station Mark: Cross in rock.
-

Eagle Peak.
 G. Clyde Baldwin, 1909.

On the summit of Eagle Peak at Eagle, Alaska. Take trail starting from near the mouth of Mission Creek.
Station Mark: Five-inch hole in native rock, center being a small cross cut in sloping side of hole. Tripod signal.

$$
\text { HoG. . G. Clyde Baldwin, } 1909 .
$$

About 1 mile east of the Line and 5 miles north of Yukon River, on the west end of a hogback ridge about 1 mile southeast of station A_{1} of the Boundary, and south of Eagle Creek.
Station Mark: Cross in rock.
Nut. G. Clyde Baldwin, 1909.
About $5 \frac{1}{2}$ miles of the Line and about due south from the Indian village on the west side of Castalia Creek. Take old Steel Creek trail past United States Military Wireless Station at Eagle, Alaska. Trail goes within about 100 yards of station.

Station Mark: Cross in rock.
Yukon. T. Riggs, jr., 1907.
On high ridge about 2 miles west of the Boundary Line, and about 3 miles below the point where the Boundary crosses the Yukon on south side of river, near brow of ridge.
Station Mark: $\frac{1}{2}$-inch drill hole in boulder set $1 \frac{1}{2}$ feet in ground. Tripod signal.

$$
\text { Pete. G. Clyde Baldwin, } 1909 .
$$

On the summit of the first ridge north of Yukon River, and about 1 mile east of the Boundary.
Station Mark: A nail in 4-inch birch hub, driven flush with the ground. It is 20.91 feet east-southeast, 31.38 feet southwest, and 25.97 feet north-northwest from nails in sides of blazed spruce stumps.

$$
\text { GEORGE. G. Clyde Baldwin, } 1909 .
$$

About 1 mile southwest of station Yukon and on the same ridge and about $3 \frac{1}{2}$ miles west of the Boundary.
Station Mark: Rough cross chiselled in large rock in place. Pole signal, with four supports, cut off about 5 feet from ground.

Knoll. \quad T. Riggs, jr., 1907.
On the north side of Yukon River, about one-half mile east of the Line, a small, bare, rocky knoll on first ridge north of river.

Station Mark: 22-caliber brass shell set in solid rock. Signal is pole and cairn 1.4 meters high.

BETWEEN THE YUKON RIVER AND MOUNT NATAZHAT.

> YUKon River West Base.

On the hillside on the south side of Yukon River, about three-quarters of a mile west of the Line, and about 50 feet from the bank.

Station Mark: Concrete pier one foot above ground, with copper rivet not quite in center of pier. Pier marked A.B.S.-W.B.-1907.

Boundary (Yukon) Latitude, Longitude, and Azimuth Station.
A concrete pier about 30 feet south of the south bank of the Yukon River, and 17.62 feet west of the 141 st Meridian. The longitude station is marked by a screw set in the concrete of the pier. For the other observations the center of the instrument was 0.022 meters farther west on the pier, no permanent additional marking being made.
Yukon River East Base.

On a small knoll on the south side of Yukon River, on river bank about 150 meters east of the Line.
Station Mark: Cross cut in copper and set in concrete pier. Pier sets about 8 inches above ground, and is marked A.B.S. E.B.-1907.

Loop. T. Riggs, jr., 1907.
On main boundary trail from Yukon River, about 2 miles east of the Line and 2 miles south of the river, on the highest brushy knoll on the ridge. Trail runs within 100 yards of station.

Station Mark: Cut on rock, with signal pole and tripod.
Plateau. \quad T. Riggs, jr., 1907.
On a wooded brushy knoll on the east-and-west ridge at the head of Boundary Creek, and 3 miles west of the Line.
Station Mark: Cross on rock set in ground. Tripod signal.
Trail. \quad T. Riggs, Jr., 1907.
On bare, round hill about three-quarters of a mile west of the Line, and about 1 mile southwest of Monument No. 114. Trail runs a little to east of station.

Station Mark: A depression battered in small boulder set in ground. The station is not in the main scheme of triangulation. Tripod signal.
SLOPE.
T. Riggs, jr., 1907.

About 3 miles west of the Line on highest bare hill, west of trail 1 mile, and north of Liberty Fork about $1 \frac{1}{2}$ miles.
Station Mark: On rock, 6-foot cairn.

Table. T. Riggs, jr., 1907.
On a mossy butte, $2 \frac{1}{2}$ miles east of the Line and three-quarters of a mile northwest of the east branch of Liberty Fork. Station Mark: 6-foot cairn over cut in a rock.

WOODY. T. Riggs, jr., 1907.
About $3 \frac{1}{2}$ miles east of the Line on the highest part of the continuation of the Liberty Ridge. A good deal of timber surrounded the station, and was cut out.
Station Mark: $\frac{3}{4}$-inch drill hole in rock sunk in ground. Tripod signal.
Liberty. T. Riggs, jr., 1907.
About $1 \frac{1}{2}$ miles west of the Line on a bare knoll, $2 \frac{1}{2}$ miles north of Fortymile Dome and $2 \frac{1}{2}$ miles south of Liberty Fork. Trail runs around base of knoll.

Station Mark: $\frac{3}{4}$-inch drill hole in rock sunk in ground. Tripod signal.

Fortymile Dome.
 T. Riggs, jr., 1907.

On the most prominent rocky knoll between Yukon and Fortymile Rivers, and about 1 mile west of the Line. At the head of the south fork of Clinton Creek.

Station Mark: U. S. G. S. aluminum tablet set in large flat rock, about 3 by 4 feet; 8 -foot cairn.
Bare.
T. Riggs, jr., 1907.

On the summit of a high, bare ridge between Clinton Creek and the heads of South Boundary and Marten Creeks. The trail from Steel Creek to Fortymile runs within a few feet of station.

Station Mark: $\frac{1}{2}$-inch drill hole in rock set in ground. Triangle cut around hole. Tripod signal.

$$
\text { Uncle Sam. .. T. Riggs, jr., } 1907 .
$$

On a knob on the trail to Steel Creek, between two forks of Sam Patch Creek on the east, and a fork of Dome Creek on the west. About 5 miles west of south of Fortymile Dome, and three miles west of the Line.

Station Mark: $\frac{1}{2}$-inch drill hole in a stone sunk in ground. Tripod signal.

> JOHN BULL. T. Riggs, jr., 1907.

About 2 miles east of the Line on the highest point of the ridge between station Bare and Fortymile River. Some dry timber had to be cut near signal. Trail runs within 100 feet of the station.

Station Mark: $\frac{1}{2}$-inch drill hole in rock sunk in ground. Tripod signal.

> RIVER. T. Riggs, jr., 1907.

On high cut bank of Fortymile River, about one-half mile north of the river and $2 \frac{1}{2}$ miles west of the Boundary. An old trail runs up the ridge from the point opposite the United States Custom House, and can be traced in places to the station.

Station Mark: $\frac{1}{2}$-inch drill hole in boulder set in ground. Tripod signal.

> Moose. T. Riggs, jr., 1907.

About $3 \frac{1}{2}$ miles east of the Line, and 4 miles south of Fortymile River on the north point of the highest ridge northeast of Moose Creek. Best route is up Moose Creek for about 4 miles, and then up point of ridge. Dense timber all the way. Top of ridge has some timber on it, and considerable cutting had to be done in vicinity of station.

Station Mark: $\frac{3}{4}$-inch drill hole in stone set in ground. Tripod signal.

$$
\begin{aligned}
& \text { CANYON. } \\
& \text { T. Riggs, jr., } 1917 .
\end{aligned}
$$

About $4 \frac{1}{2}$ miles west of Baldy Mountain on the ridge between Smith Creek and Canyon Creek. Smith Creek forks at the foot of the hill on which the station stands, the left-hand fork running up to the saddle south of Baldy Mountain. The station is on the highest knob on the ridge. A large spruce tree, stubby at the top, with a foliage about the same spread up to the top, stands about 75 feet from the station a little east of north.

Station Mark: A large granite boulder set in the ground; $\frac{3}{4}$-inch drill hole with surrounding triangle. Tripod pole signal.

$$
\text { Baldy. T. Riggs, jr., } 1907 .
$$

On Baldy Mountain, a high, bare hill, very flat on top, about 1 mile east of the Line, and west of Moose Creek and about 7 miles south of Fortymile River. Alma Creek heads northwest of it. The main trail from Moose Creek to Glacier passes over a bench near the top on the west side.
Station Mark: A platform about $1 \frac{1}{2}$ feet high built from loose rock and gravel, to make station high enough to observe from; $\frac{3}{4}$-inch drill hole in boulder in center of platform. Tripod signal.

> BABY. About $4 \frac{1}{2}$ Riggs, jr., 1907 . Areek and Walkers Fork. the Line, and 9 miles southwest of Baldy Mountain, on a spur of the divide between Canyon Creek and Walkers Fork. Spur runs out between Baby and Woods Creeks. Station is on the highest brushy knob on ridge. Considerable timber had to be cleared off to make sights.

Station Mark: $\frac{3}{4}$-inch drill hole in rock set in ground. Triangle cut around hole. Tripod signal.
Marmot.
T. Riggs, jr., 1907.
About $1 \frac{1}{2}$ miles east of the Line on the highest part of a blackish piece of slaty ledge. At the head of south fork of Hall Creek, and west of the head of Moose Creek. Trail from Glacier to Moose Creek passes near station.

Station Mark: $\frac{3}{4}$-inch drill hole in solid rock.
Gold.
On a high, bald plateau, the highest point on an east-and-west ridge immediately north of Gold Creek. The most southerly fork of Moose Creek heads in the knob on which is the station. Trail to Dawson, over which a few wagons have been driven, runs along the side of the knob. Station is on the western edge of highest part.

Station Mark: $\frac{3}{4}$-inch drill hole in triangle cut in rock. Cairn around pole.

Walker.
T. Riggs, jr., 1907.

Unoccupied triangulation point on a bare hill on the trail between Glacier Creek and Walkers Fork, and about $1 \frac{1}{2}$ miles southwest of Monument No. 126. Trail runs near signal.
Station Mark: Drill hole in rock. Cairn signal.

$$
\text { T. Riggs, jr., } 1907 .
$$

Unoccupied point between two forks of Cherry Creek on a high bald ridge.
Station Mark: Drill hole in rock. Cairn signal.
Miller. . T. Riggs, jr., 1907.
Unoccupied point, on a high, broken-rock ridge between Miller Creek and Bedrock Creek, and at the head of a fork of Walkers Fork and about three-quarters of a mile east of Boundary.
Station Mark: $\frac{1}{2}$-inch drill hole in rock. Cairn signal.
Ptarmigan.
T. Riggs, jr., 1907.

On a high, black, shattered-rock knoll on the ridge at the head of Walkers Fork, and north of Bedrock Creek. About one-half mile west of the Line, where it crosses about the middle of a deep saddle.
Station Mark: $\frac{3}{4}$-inch drill hole in stone set in ground. Triangle cut around hole. Cairn and flagpole.
Bedrock.
T. Riggs, jr., 1907.

On the south edge of the highest bare knob between Bedrock and Pat Murphy Creeks about one mile east of the Line. Station Mark: $\frac{3}{4}$-inch drill hole in rock set in ground. Triangle cut around hole. Cairn and flagpole.

$$
\text { WITHERSPOON. T. Riggs, jr., } 1907 \text {. }
$$

On a rock sticking out of a smooth, mossy knob on the main divide between the waters of Fortymile and Sixtymile Rivers, at the head of the middle fork of Cherry Creek, and about $6 \frac{1}{2}$ miles west of the Boundary Line.
Station Mark: $\frac{3}{4}$-inch drill hole in stone set in ground. Triangle cut around hole. Cairn and flagpole.

Unoccupied point, about $1 \frac{3}{4}$ miles west of the Line on a flat rise on the main ridge running through from Fortymile River to Sixtymile River, and about 2 miles from where the ridge drops off into the Sixtymile. A trail runs around the hill on which the station is placed, and signa! is visible from trail.
Station Mark: Drill hole in rock with cairn.
Sixtymile River East Base. T. Riggs, jr., 1907.
On a rocky hogback about $1 \frac{1}{2}$ miles west of the Line on top of the ridge between the Sixtymile and a creek flowing into it. At south end of hogback is a cairn with a stick in it, which has been identified as one of McArthur's camera stations.

Station Mark: Cross cut in lead plug poured into a $\frac{3}{4}$-inch drill hole in solid but rather crumbly rock. Mark was covered up with dirt to the depth of a few inches but the knob on which it is can readily be identified by the base-line vista. Tripod signal.

Sixtymile River West Base.
T. Riggs, jr., 1907.

About 1.6 miles west of East Base on the edge of the ridge dropping off into the north fork of the Sixtymile.
Station Mark: Cross cut on a steel set-screw hammered into a drill hole sunk into a large boulder set about 2 feet into the ground. Tripod signal.

$$
\text { LODE. . . T. Riggs, jr., } 1907 .
$$

Unoccupied point on the highest point on the bare top of a mountain between the north and south forks of Sixtymile River, and about 6 miles west of the Line. This point is easily recognizable from all sides and, while not as high as the ridges to the south, on account of its isolation it is very prominent.

Station Mark: Drill hole in rock. A quartz vein was being prospected a few hundred feet below the signal.
Crag.
T. Riggs, jr., 1907.

On the main divide between the waters of Sixtymile River and Ladue River. About 1 mile east of the Line, and on same ridge as Monument No. 133. Station is on the highest one of a jumbled-up bunch of granite boulders. A large rock of nearly the same height is 15 feet to the northwest, with a loose rock on top of it.

Station Mark: $\frac{3}{4}$-inch drill hole in solid rock, triangle cut around hole. Cairn.

$$
\text { Spur. T. Riggs, jr., } 1907 .
$$

About $2 \frac{1}{2}$ miles west of the Line on a shaly rounding hill, the second from the main divide between Sixtymile and Ladue Rivers. The spur runs down from station Divide between two forks of the Sixtymile, and is the first large spur west of the Line.

Station Mark: $\frac{3}{4}$-inch drill hole in shale rock. Triangle cut around hole. 3-foot cairn and center pole.

$$
\text { DIVIDE. } \quad \text { T. Riggs, jr., 1907-8. }
$$

On a broken, rocky knoll on the highest point of the divide between the waters of Sixtymile River and Ladue River. Sixtymile River heads about two miles southwest of the station, and flows, in a great bend known as the Fishhook Bend, around the west end of ridge. The head of one of the forks of Ladue River is separated from the head of the Sixtymile by a low divide.

Station Mark: A small hole made with a nail 0.15 foot west of a $\frac{3}{4}$-inch drill hole in large flat rock. Triangle cut around hole. Cairn and flagpole.

OdELL.

T. Riggs, jr., 1908.

About 10 miles south of Sixtymile River, and $2 \frac{1}{2}$ miles east of the Line on the break of the ridge running from station Crag, the first ridge east of the Line.

Station Mark: $\frac{1}{2}$-inch drill hole in triangle cut on stone in ground. 5 -foot cairn, with a flagpole.

$$
\text { FRED. } \quad \text { T. Riggs, jr., } 1908 .
$$

On the first high point south of station Divide, which is on the highest point on the watershed between the waters of Sixtymile River and McArthur Creek. Station is on a north-and-south spur.

Station Mark: $\frac{1}{2}$-inch drill hole in triangle cut on stone in ground; $5 \frac{1}{2}$-foot cairn, with flagpole.
Interior.
T. Riggs, jr., 1908.

On a projecting ledge of shale rock on a knob on the main ridge running down from the main divide between McElfish Creek and North Fork of Ladue River, and about 1 mile west of the Line.

Station Mark: $\frac{1}{2}$-inch drill hole in triangle cut on rock about 6 inches below surface of ground. 4-foot cairn.
Ladue.
T. Riggs, jr., 1908.

On a wooded knoll about 5 miles east of the Line, on third ridge from the ridge heading at Monument No. 133, and second ridge from station Odell, and about 7 miles northeast of the mouth of McArthur Creek. Ridge runs about southeast-northwest. Station is on highest and last knob on ridge.

Station Mark: $\frac{1}{2}$-inch drill hole in triangle cut in large quartz boulder set in ground. Tripod signal.

Timber.

T. Riggs, jr., 1908.

A rocky point, 5 miles west of the Line, on a timbered ridge running about east and west. The ridge runs up from the North Fork of Ladue River opposite a timbered knoll called "Junction" standing well out in the flat, and almost opposite the mouth of McElfish Creek. The first summit on the ridge west of Ladue River is broad and timbered heavily. Between the two points is a saddle with two humps in it.

Station Mark: $\frac{1}{2}$-inch drill hole in triangle on projecting piece of gneiss. Tripod signal.

Ridge.

$$
\text { T. Riggs, jr., } 1908 .
$$

A brushy knob, about 4 miles east of the Line on a long ridge running east and west. The knob is a continuation of the ridge, the end of which, " Junction," is a point for topographic control. "Junction ". at a distance looks like a lone knoll in the valley of the North Fork of Ladue River. The knob on which station is located is a small mound with stringers of quartz.

Station Mark: $\frac{1}{2}$-inch drill hole in triangle cut on stone set in ground. Tripod signal.

$$
\text { PoINT. T. Riggs, jr., } 1908 .
$$

About 7 miles east of the Line on a timbered knob on a narrow, heavily timbered ridge running northwest from the bend in the valley of the North Fork of Ladue River. The ridge on which Monument No. 142 stands comes into the valley one ridge south of this ridge, and on the opposite side of the river. The knob is not on the main summit but on the highest part of the spur from the north-and-south ridge.

Station Mark: $\frac{1}{2}$-inch drill hole in ledge of rock in place. Tripod signal.
Summit. T. Riggs, jr., 1908.
About $4 \frac{1}{2}$ miles west of the Line on the first high ridge to be seen from the north, and between two tributaries of the North Fork of Ladue River. The station is on the same ridge as Monument No. 142, on a round rocky, dome-like knob, rather flat on top, the highest on the ridge where it divides, one part running south and the other northwest.

Station Mark: $\frac{1}{2}$-inch drill hole in triangle cut on large rock set in ground. 6 -foot cairn.

FRA-WA-PE. \quad. Riggs, jr., 1908.

About 7 miles east of the Line, and 4 miles northeast of junction of North Fork and Ladue River on rock outcrop on the highest part of a thickly timbered ridge. Near the top of the station ridge are two knobs with saddles between; the station is on the more easterly. A good three hours' walk from the creek up the ridge. Fra-wa-pe Creek lies to the south, with a ridge between the station and Ladue River.

Station Mark: $\frac{1}{2}$-inch drill hole in triangle cut on rock. The moss had to be scraped off to expose the rock. There is just room on top of the rock to work comfortably. Tripod signal.

$$
\text { Он-ті. T. Riggs, jr., } 1908 .
$$

About 3 miles west of the Line on a ledge of exposed rock on a high conical hill on the main ridge between Ladue River and its North Fork. The hill is at the point in the ridge where it bends to the southeast. The boundary trail runs 300 yards from the station.

Station Mark: $\frac{1}{2}$-inch drill hole in triangle cut on rock in place, about 6 feet east of a number of rocks sticking up about 6 feet higher than station. Tripod signal.

Bump.
T. Riggs, jr., 1908.

On the second knob on ridge west of McArthur Creek. The timber has been burnt off the knob, except a small bunch of spruce on the south side. The point of the ridge runs down to a bench in the creek.

Station Mark: $\frac{1}{2}$-inch drill hole in triangle cut on rock set in ground. Tripod signal.
Brown. T. Riggs, jr., 1908.
On the first rise northeast of the three knobs west of which the Line runs, about 7 miles south of Ladue River. Is on the boundary trail. Some aspen brush.

Station Mark: $\frac{1}{2}$-inch drill hole in triangle cut on stone 1 -foot square sunk in ground. Tripod signal.
Black. T. Riggs, jr., 1908.

On a knob of a heavily timbered ridge, about 7 miles east of the Line and 6 miles south of Ladue River, and east of small tributary which heads in the Moosehorn Mountains.
Station Mark: $\frac{1}{2}$-inch drill hole in triangle cut on rock. Tripod signal.
Missou.
the highest point of the third rise on the main ridge of the Moosehorn Mountains, about $8 \frac{1}{2}$ miles south of La
On the highest point of the third rise on the main ridge of the Moosehorn Mountains, about $8 \frac{1}{2}$ miles south of Ladue River. The bump is bare and rocky.
Station Mark: $\frac{1}{2}$-inch drill hole in triangle cut on flat rock sticking up about 2 inches above ground; $4 \cdot 5$-foot cairn and flagpole.

$$
\begin{aligned}
& \text { Moosehorn. }
\end{aligned} \text { T. Riggs, jr., } 1908 .
$$

On the second rocky dome south from station Missou, and on same ridge, being about the southern end of Moosehorn Mountains.
Station Mark: $\frac{1}{2}$-inch drill hole in triangle cut on boulder about 4 feet square, and deeply imbedded in ground; 6.7-foot cairn, with pole.

$$
\text { Flat. .. T. Riggs, jr., } 1908 .
$$

About 6 miles west of the Line, and almost due west of station Moosehorn, on the highest point of the heavily timbered ridge west of McArthur Creek. Station is on a large outcrop of granite.
Station Mark: $\frac{1}{2}$-inch drill hole in triangle cut on rock in place. Tripod signal.

Sauerkraut. T. Riggs, jr., 1908.

About $7 \frac{1}{2}$ miles west of the Line on a heavily timbered spur ridge west of McArthur Creek, the second ridge from the end of long ridge running down to a lake on the Line. The spur reaches out into a large flat country, which is tributary to the Tanana River. Much chopping for lines of sight.
Station Mark: A drill hole in triangle on granite outcrop. Tripod signal.

> WIENERWURST.

About $1 \frac{3}{4}$ miles east of the Line, a on heavily timbered lone hill at the end of a long ridge running down from Moosehorn Mountains. There is a lake to the northwest, and a number of them to northeast, these latter draining through Scottie Creek, which runs around the north side of the hill. The station is the highest knob where a great deal of cutting had to be done to open lines of sight.

Station Mark: A drill hole in triangle on granite outcrop, about 4 inches under moss. Tripod signal.

$$
\begin{aligned}
& \text { Scotrie. } \\
& \text { the highest rocky point on the ridge, and about } 1 \text { mile southwest of Monument No. 158. T. Riggs, jr., } 1908
\end{aligned}
$$

On the highest rocky point on the ridge, and about 1 mile southwest of Monument No. 158.
Station Mark: $\frac{1}{2}$-inch drill hole in solid rock, and on south side of highest rocks. 5 -foot cairn, with pole.
About $7 \frac{1}{2}$ miles west of the Line on a lone, rounding hill rising out of a flat country dotted with lakes, to the west of hill on which station Scottie and Monument No. 158 are situated. There are two lakes to east of hill, in a niggerhead swamp, and a large swamp to the west and north. The hill has been burnt over and has new growth of aspen and birch; blueberry bushes cover the whole hill.
Station Mark: $\frac{1}{2}$-inch drill hole in triangle cut on projecting point of huge boulder. Tripod signal.
Starvation. W. B. Reaburn, 1908.
On the first bench, and about one-quarter mile east of Monument No. 160, in scattered spruce and brush. Some cutting to open up vistas.
Station Mark: $\frac{3}{8}$-inch drill hole in a large rock in place. The rock stands up about 1 foot above surface of ground.
Rupe.
W. B. Reaburn, 1909.

About $1 \frac{1}{2}$ miles east of the Line, on the western end of a long east-and-west ridge, connected by a high saddle with the ridge Monumnet No. 160 is on. The station is about $1 \frac{1}{4} \frac{1}{4}$ miles east of station Starvation.

Station Mark: $\frac{3}{8}$-inch drill hole in a triangle cut on a large stone set in ground in the north end of a bare spot.

Mirror. W. B. Reaburn, 1909.

On a densely timbered ridge, about 6 miles west of the Line, $1 \frac{1}{2}$ miles northeast of Scottie Creek, and about 7 miles southwest of Monument No. 160. Timber cut around signal with vistas to see other signals.

Station Mark: $\frac{3}{8}$-inch drill hole in a triangle cut on a stone set in ground flush with the surface.

$$
\text { AIRS. W. B. Reaburn, } 1909 .
$$

On the highest point on a flat-top hill, known as "Airs Hill," which is the highest point on the divide between Scottie and Mirror Creeks. Station in on the same ridge, and about $3 \frac{1}{2}$ miles a little north of west from Monument No. 164.
Station Mark: $\frac{3}{8}$-inch drill hole in a triangle cut on a large flat rock set flush with the surface of ground. There are three large rocks set below the surface of ground to set instrument on.

$$
\text { Dave. W. B. Reaburn, } 1909 .
$$

On the highest point on a densely timbered hill, about $4 \frac{1}{2}$ miles east of the Line, and $1 \frac{1}{2}$ miles north of a lake, which is the head of southerly branch of Scottie Creek. The timber is cut for the north and west vistas, and backgrounds cut for the other sights.
Station Mark: $\frac{3}{8}$-inch drill hole in a triangle cut on a stone set flush with the surface of the ground.

Snider.
 D. W. Eaton, 1909.

About one-half mile west of the Line on a timbered hill on the same ridge as, and about 1 mile northwest of Monument No. 166. Timber is cut around the signal.
Station Mark: $\frac{3}{8}$-inch drill hole in a triangle cut on an outcropping ledge of rock.
Wellesley. \quad D. W. Eaton, 1909.
On the highest point of the eastern end of Wellesley range of hills. A wall of rock, having a vertical face of about 20 feet on its southern side, extends east and west across the summit, and the station is on the eastern end of this wall.

> SNaG.
> About $6 \frac{1}{2}$ miles east of the Line on a wooded knoll about 500 feet above, and on the right bank of Beaver Creek. The knoll is the western end of a series of hills between Beaver Creek and White River, and south of Snag River. East about $3 \frac{1}{2}$ miles is an isolated cluster of hills extending in an east-and-west direction, having the appearance of being partly submerged in the surrounding flats or muskeg. About one-half mile southeast is a small isolated knoll, about 300 feet above the flat. The top of the knoll around the station is cleared of trees, and a vista is cut to the stations surrounding.

Station Mark: $\frac{3}{8}$-inch drill hole in a triangle cut on a basaltic stone set in the ground, with top flush with the surface.

Niggerhead. - D. W. Eaton, 1909

Five and a half miles east of the point where Beaver Creek crosses the Line for the third time; on a solid rock, which is the highest point of a group of hills called Niggerhead Hills.

Station mark: $\frac{3}{8}$-inch drill hole in a rock in place, about 3 feet in diameter, surmounted by a cairn with pole.

$$
\text { Baultoff. D. W. Eaton, } 1909 .
$$

On the eastern rim of a flat-top mountain, about 4 miles south of west of Baultoff cabin. It is not on the highest part of the mountain, but on the rim overlooking the valley to the eastward, the summit, one-quarter mile east, being approximately 100 feet higher. It is easily reached from Baultoff cabin.
Station Mark: $\frac{3}{8}$-inch drill hole in triangle on a stone about 16 by 15 by 8 inches which is set flush with the ground.
ED. D. W. Eaton, 1909.
About $4 \frac{1}{2}$ miles east of the Line on an isolated ridge to the east of Beaver Creek, about midway between the first and second crossings of the Line. It overlooks a flat country with numerous small lakes, toward the White River to the eastward. It is not on the highest part of the ridge, which is a few feet higher along the summit south of the station. It is easily found by following the top of ridge from the north end.

Station Mark: ${ }^{3}$-inch drill hole in a stone set with top fairly level with surface, surmounted by a cairn and pole.
Joe.
D. W. Eaton, 1909.

About 6 miles west of the Line on a mountain $1 \frac{1}{2}$ miles northwest of Brays Pass. It is not on the highest point, as a small peak one-quarter mile south of station is higher. It is easily reached from the small lakes in Brays Pass by following the stream emptying into them, or from the stream in the valley north of station Joe.

Station Mark: $\frac{3}{8}$-inch drill hole in triangle on a stone 8 by 8 by 8 inches set nearly level with surrounding stones on summit. A cairn with pole.

Beaver.
 D. W. Eaton. 1909.

About three-quarters of a mile east of the Line on the highest point of the ridge running eastward from Monument No. 175, which is on a ridge to the westward of station Beaver and is connected with the ridge on which Monument No. 174 is situated by a comparatively low saddle at the head of a stream flowing by Lamb and Benson's cabin (Bullion Creek).

Station Mark: $\frac{3}{8}$-inch drill hole in a stone surmounted by a cairn with pole.

Hump.

D. W. Eaton, 1909.

About 5 miles east of the Line on a hump on a ridge leading out from the first mountains north of Rabbit Creek between Beaver Creek and White River. The station is northward from the outlet of "Lake Tosmona," which drains into Beaver Creek. The station is easily reached from the outlet of the lake.

Station Mark: $\frac{3}{8}$-inch drill hole in a basaltic stone 12 by 12 by 8 inches, set in the summit gravel, surmounted by a cairn with pole.

WI-KI. D. W. Eaton, 1909.
About 6 miles west-southwest of the mouth of Ptarmigan Creek. On the eastern point of a ridge which froms the eastern end of a short chain of mountains to the south of Beaver Creek. The station overlooks Beaver and Ptarmigan Creek valleys, and from the junction of these valleys the station appears to occupy the highest point of the end of the ridge. There are several rock projections to the west, which are 8 or 10 feet higher.

Station Mark: $\frac{1}{2}$-inch drill hole in a basaltic stone 18 by 12 by 7 inches, set level with the surface, surmounted by a cairn and pole.

Sheep.
D. W. Eaton, 1909.

Three miles west of the Line on the highest point of the ridge at the head of Rocker Creek.
Station Mark: $\frac{3}{8}$-inch drill hole in triangle on rock nearly level with the surface, surmounted by a cairn and pole.
Rabbit. D. W. Eaton, 1909.
One quarter mile east of the Line on the highest point near the eastern edge of the flat-top mountain at the head of Lignite Creek.

Station Mark: A drill hole in triangle on a stone set level with the surface, surmounted by a cairn with pole.
23565-17

Center. T. Riggs, Jr., 1909.
On a rocky peak one-quarter mile southeast of Monument No. 181, and about $2 \frac{1}{2}$ miles northeast of Cache Creek. A fork of Rabbit Creek heads in the mountain just opposite the saddle to the east and north of it. A small fork of Cache Creek heads in the same saddle, but on the southwest side. Mountain is the fourth from White River in the range running northwest just east of the Boundary, and is a mass of slide rocks.

Station Mark: Triangle and $\frac{1}{2}$-inch drill hole in large slab of basalt, with a $3 \frac{1}{2}$-foot cairn over it. Pole in center.

$$
\text { CACHE. } \quad \text { D. W. Eaton, } 1909 .
$$

About $2 \frac{1}{4}$ miles west of the Line on the edge of a lava flow on the western side of Cachedreek valley, about 4 miles from the mouth of Cache Creek.
Station Mark: $\frac{3}{8}$-inch drill hole in a rock, surmounted by a cairn and pole.
Flat Top.
D. W. Eaton, 1909.

About $1 \frac{3}{4}$ miles east of the Line on a flat-top mountain, the highest peak in sight to the northeast from the mouth of Cache Creek. About 100 feet south of, the station is a vertical cliff.

Station Mark: $\frac{3}{8}$-inch drill hole, surmounted by a cairn and pole.
Harris.
Frederick Lambart, 1913.
On the highest point of a round-top ridge immediately south of the large flat between the White and Jenerk Rivers, at their junction, and about 1,000 feet above the flat.

Station Mark: A 3-inch wire nail in a stump about 18 inches above ground level. A tripod signal was left over the station.
White River, East Base.
D. W. Eaton, 1909.

On the south side of White River on the flats, about $1 \frac{1}{4}$ miles below the mouth of Kletsan Creek, and about one-half mile above the mouth of Cache Creek, which comes into White River on the opposite side. It is between two streams of clear water, which come together below the station. There is a line of posts in line with West Base, and a tripod signal was left standing in 1909.

Station Mark: A cross on a piece of tin imbedded in the top of a block of concrete 8 by 8 by 24 inches set 18 inches in the ground. The concrete block marked "W.R.E.B. 1909."

White River, West Base.
D. W. Eaton, 1909.

On the south side of White River, about 400 feet south from its bank, and above the mouth of Kletsan Creek. It is in an open space, about 150 feet from the edge of the timber (spruce). There is a line of posts in line with East Base, and a tripod, 18 feet high, surrounded by an observing scaffold, was left standing over the station in 1909.

Station Mark: A cross on a piece of tin imbedded in the top of a block of concrete 8 by 8 by 24 inches set 18 inches in the ground. The concrete block marked "W.R.W.B. 1909."

Kletsan.
D. W. Eaton, 1909.

On the highest point of Kletsan Hills, an isolated cluster of hills between Little Boundary Creek and Kletsan Creek, south of White River.
Station Mark: $\frac{3}{8}$-inch drill hole in a triangle on a stone, set flush with the surface.
Traver. D. W. Eaton, 1909.
About $4 \frac{1}{2}$ miles west of the Line on the highest point of an isolated hill between Traver Creek and Cub Creek, and about $1 \frac{1}{2}$ miles south of White River.

Station Mark: $\frac{3}{8}$-inch drill hole in triangle on a stone, set flush with the surface. A large spruce stump is about 10 feet southwest from station.

Jenerk.
Frederick Lambart, 1913.
On the eastern extremity of a flat which forms the northerly end of the ridge lying between Boulder Creek, which rises on the eastern slopes of Mount Lambart and joins the Jenerk River about 20 miles above its mouth, and the headwaters of Big and Little Boundary Creeks. The station lies about $1 \frac{3}{4}$ miles northwest of the mouth of Boulder Creek, and 1,500 feet above it.

Station Mark: $\frac{1}{2}$-inch drill hole in a triangle cut on a boulder about 25 feet from the eastern edge of the flat. A tripod signal was left over the station.

SCORIA. T. Riggs, jr., 1909.
On the highest point of a sand hill, about 3 miles east of the Line and one-half mile east of a gravel flat in Little Boundary Creek, and just east of the largest lake in the neighbourhood. This hill is the only one in vicinity with any trees on it. One stumpy, bushy tree is particularly noticeable from the west.

Station Mark: $\frac{1}{2}$-inch drill hole in triangle on a stone about one foot square, sunk in the ground.

Cub. D. W. Eaton, 1909

About 6 miles west of the Line and 8 miles south of White River, on the highest point on the end a a spur leading out from the mountains west of Cub Creek. Views $48-\mathrm{E}, 49-\mathrm{E}, 50-\mathrm{E}$ and $52-\mathrm{E}$ of Riggs, 1909 , were made from this station.
Station Mark: $\frac{3}{8}$-inch drill hole in triangle on a rock in place, surmounted by a cairn and pole.

Dalton.

T. Riggs jr., 1909.

About one-half mile west of the Line on a shattered, moss-covered knob on the first ridge west of the ridge on which Z of the Boundary is located. The most westerly fork of Kletsan Creek runs just west of the ridge, and the middle fork is between the station and Z of the Boundary. The station is on the next knob up the ridge from two prominent black-rock pinnacles about 150 feet distant. Below the pinnacles the ridge is all brown shale slide.
Station Mark: $\frac{1}{2}$-inch drill hole in a stone 24 by 18 by 8 inches, lying on ground. Surmounted by a cairn and pole.

Lambart.
Frederick Lambart, 1913.
On a prominent peak on the Natazhat ridge, three-quarters of a mile east of the Line, and 4 miles east of Mount Natazhat; about 5,000 feet above Natazhat Glacier, and 4 miles north of Klutlan Glacier.

No station mark, on account of snow cap.
Klutlan.
Frederick Lambart, 1913.
On the summit of a cone-shaped peak, the most easterly prominent peak in that portion of the Natazhat Range lying in the bend of the Klutlan Glacier. The station is about 8 miles east of the Line, and 4,000 feet above the glacier, and was climbed from the east, leaving the glacier at a large flat about 10 miles above Boulder Creek.

No station mark, on account of snow cap.
Crag.
Frederick Lambart, 1913.
About $1 \frac{1}{2}$ miles east of the Line on the highest point of a cone-shaped peak lying immediately south of Klutlan Glacier, and about 3,600 feet above the glacier.

No station mark, on account of snow cap.
Bo.
Frederick Lambart, 1913.
About 6 miles east of the Line of the highest point of a prominent peak, which lies between Klutlan Glacier and Neshan Glacier, which joins it from the south. It is about $1 \frac{1}{2}$ miles southeast of the junction of the glaciers, and is about 3,500 feet above them.

No station mark, on account of snow cap.

BETWEEN THE BOUNDARY CROSSING OF WHITE RIVER, AND MOUNT ST. ELIAS.

Ping Pong.
D. W. Eaton, 1909

A cairn on the highest rocky knob near the western end of the range of hills on the north side of White River directly opposite the mouth of Holmes Creek. There are two small lakes to the northeast.

Station Mark: A $\frac{3}{8}$-inch drill hole in a large rock, set in ground.

A cairn on a rocky ledge on the north end of a north-and-south ridge, which is a foothill, but is detached from the main range by a saddle at the head of the creek. The cairn is on the first ridge west of first creek west of Holmes Creek, and south of White River.

Station Mark: $\frac{3}{8}$-inch drill hole in a triangle cut on a stone set in ground.

Burnt Hill.
 W. B. Reaburn, 1909.

On a small, burnt hill, brushy on top, with grass on the southeast slope, rising out of a timbered country about 5 miles west of station Ping Pong, and $1 \frac{1}{4}$ miles north of the flats of White River.

Station Mark: $\frac{3}{8}$-inch drill hole in a triangle cut on a stone set in the ground flush with surface.
Black Eagle. W. B. Reaburn, 1909.
A cairn on a rocky knob on a grassy hill which is a foothill of the main range south of White River. The cairn is about one-half mile east of a small glacial stream, to the west of which is a long string of grassy hills, which are apparently detached from the main range.

Station Mark: $\frac{3}{8}$-inch drill hole in a triangle cut on a large stone set in ground.

$$
\text { Solo. W. B. Reaburn, } 1909 .
$$

A cairn on a small knoll north of White River, about 1 mile north of a cabin on Solo Creek, and about one-third of a mile east of this creek.
Station Mark: $\frac{3}{8}$-inch drill hole in triangle cut on a stone set in ground.

$$
\text { BEND. W. B. Reaburn, } 1909 .
$$

A cairn on a knob of a spur south of, and in the bend of, White River where the valley turns to the southwest (looking up stream) and about 24 miles above the Line and about two miles northeast of the foot of the glacier at the head of river.

Station Mark: A $\frac{3}{8}$-inch drill hole in a triangle cut on a stone set in ground.
End.
W. B. Reaburn, 1909.

A cairn on the middle peak on a spur sloping to the northeast between White River and its middle fork.
Station Mark: $\frac{3}{8}$-inch drill hole in a triangle cut on a stone set flush with the ground.
Skolai. W. B. Reaburn, 1909.
A cairn on a knob of a black spur, the first ridge to the southwest of the second glacier coming in from the southeast, and about two miles north of Russell Glacier. The spur slopes to the northwest, and the slope is gradual on the southwest and very steep on the northeast.

Station Mark: A drill mark in a small triangle cut on solid rock.
Russell.
A. C. Baldwin, 1912.

On the south end of a high range of mountains which lie immediately north of the White River end of Russell Glacier. Between the station and the largest fork of the range is a saddle, one-half mile below, which is the beginning of timber-line on White River; there is a lone log-cabin here. The station is on the highest point of the south fork of the range.
Station Mark: A hole drilled in rock in place, with a surrounding triangle. The signal is a cairn with a center pole.
23565-17 $\frac{1}{2}$

Lime.
W. B. Reaburn, 1909

A cairn on a high hill to the northeast of Lime Creek and almost opposite the foot of the glacier in that stream. The main fork of Solo Creek heads on the north side of the hill, and a branch of Solo Creek heads on the east side of hill.
Station Mark: $\frac{3}{8}$-inch drill hole in a triangle cut on a rock in place.
Glacier.
A. C. Baldwin, 1912.

On the first high snow-capped mountain to the north of Skolai Creek, and about $1 \frac{1}{2}$ miles west of the western foot of Russell Glacier. The station is on the second or northwest peak of the range, which connects by a low saddle with Skolai Peak, 2 miles to the east. The mountain breaks off precipitously on all sides, and is covered with perpetual snow.

Station Mark: A triangle with sides about 1 inch in length, cut in native rock. It is located on a small shelf about 18 feet from the top of the peak, and about 2 feet from the wall of the shelf.

$$
\text { Pass. . . A. C. Baldwin, } 1912 .
$$

On a low divide at the west end of Russell Glacier between Skolai Creek and Chitistone River. This divide is known as Chitistone Pass. The station is on the highest point of the second bench above Skolai Creek. Two miles to the east and west are high glaciated mountains.

Station Mark: Hole drilled in rock with surrounding triangle. Cairn, with center pole.

Frederika.

On the southeast end of the long spur leading southeasterly from Frederika Mountain. It is about 3 miles northeast of the foot of Frederika Glacier, and is at the head of the second creek coming in from the east. The station is about 100 feet below the first top of the spur, and on the eastern end of a shelf which breaks off precipitously on the east side.

Station Mark: Hole, with a surrounding triangle, drilled in stone set flush with ground. Cairn signal.
Gofer.
A. C. Baldwin, 1912.

On a low glacial bench south of Skolai Creek, and below peak "C." The station is about one mile south of the mouth of the second or upper canyon of Skolai Creek. A small lake is 100 feet to the southwest. The station is on a large flat rock 12 by 10 by 3 feet. There are numerous other rocks of all shapes and sizes in the immediate vicinity.

Station Mark: A hole, with surrounding triangle. Cairn signal.
Coal. A. C. Baldwin, 1912.
On a high mountain 3 miles west of Fredericka Creek, 2 miles north of Skolai Creek, and about $1 \frac{1}{2}$ miles north of east of the sharp red pinnacle of rock on the side of Station Creek.
Station Mark: $\frac{3}{8}$-inch hole, with surrounding triangle, drilled in stone set flush with the ground. Cairn signal.
Rohn.
A. C. Baldwin, 1912.

On a high mountain about 5 miles north of Skolai Creek, and about 4 miles east of the junction of Rohn Glacier with Nizina Glacier; on a rocky prominence, the rest of the mountain being covered with snow and ice.

Station Mark: Hole, with surrounding triangle, drilled in a rock in place. Cairn signal.
Foothill.
A. C. Baldwin, 1912.

On the highest part of the ridge just south of the head of Skolai Lake, and about $1 \frac{1}{2}$ miles southeast of station Fulcrum. About one mile east of the station is a high glaciated mountain.

Station Mark: A hole, with surrounding triangle, drilled in stone set flush with the ground. Cairn signal.

$$
\text { Fulcrum. A. C. Baldwin, } 1912 .
$$

On a low knob about two miles south of the head of Skolai Lake. To the west of the station the hill breaks off abruptly or about 1,000 feet, where there is a gradual slope to the Nizina Glacier.

Station Mark: $\frac{3}{8}$-inch hole, with surrounding triangle, drilled in rock. Cairn signal.

Goat.
 A. C. Baldwin, 1912.

On what is known as Chimney Mountain, which lies between Regal and Rohn Glaciers. The station is on the second bench above Regal Glacier, and about 2,000 feet below a prominent chimney-like tower on the summit of the mountain. Just east of the station the mountain breaks off precipitously to Nizina Glacier.

Station Mark: A hole, with triangle, drilled in a rock. Cairn signal.

$$
\text { Sentinel. A. C. Baldrwin, } 1912 .
$$

On a spur leading to the northeast from Nizina Mountain. On the east end of the spur is a prominent rock, resembling a man in appearance. The station is about one-half mile west of this rock.
Station Mark: A $\frac{3}{8}$-inch hole, with surrounding triangle, drilled in rock in place. Cairn signal.
Nizina. A. C. Baldwin, 1912.
On the high mountain between the main Nizina River and its west branch. It is nearly due west 3 miles from the foot of Nizina Glacier. The station is on the east peak of the mountain.

Station Mark: A $\frac{3}{8}$-inch hole drilled in a rock. Cairn signal.
Nikolat. A. C. Baldwin, 1912.
About $7 \frac{1}{2}$ miles east of north of Sourdough Peak on the highest point of the ridge between the Nizina River and McCarthy Creek. It is about 3 miles west of the junction of Nizina River with its west branch. The station overlooks the west branch of the Nizina.

Station Mark: A hole, with surrounding triangle, drilled in a rock in place. Cairn signal.

Chitistone.
A. C. Baldwin, 1912.

On a high mountain just north of Chitistone River. The station is located on a flat top, about $1 \frac{1}{2}$ miles from west end of the range, or about 4 miles east of the island in the Nizina bar at the junction of Chitistone and Nizina Rivers.
Station Mark: $\frac{3}{8}$-inch hole, with surrounding triangle drilled in rock. Cairn signal.
Boulder.
A. C. Baldwin, 1912.

On the ragged ridge east of Nizina River, south of Chitistone River, north of Dan Creek and west of Boulder Creek. The station is on a bluff, which breaks off precipitously toward the Nizina, and is about one-quarter mile north of the ${ }^{3}$ highest point of the ridge.
Station Mark: $\frac{3}{8}$-inch hole in rock in place. Cairn signal.
East Sourdough. A. C. Baldruin, 1912.
On the peak $1 \frac{1}{2}$ miles northeast of Sourdough Peak. The station is about 100 feet below the summit. It overlooks Nizina River to the south, and breaks off abruptly to the north.
Station Mark: $\frac{3}{8}$-inch hole, with a triangle around it, drilled in a rock in place. Cairn signal.
Nizina River, Southwest Base.
A. C. Baldwin, 1913.

Nizina River, Northeast Base.
The Nizina River base is located on the north side of Nizina. River, directly opposite the mouth of Dan Creek, and on a flat peavine bar. The northeast end is near the timbered point, from which the river swings in a large bend toward Dan Creek, and is about one-quarter mile from the river and about 100 yards from the rocky cliff of the point. The southwest end is near the point where the river again strikes the north bluff, and about 100 yards from the river, with a landslide from the mountain just north of it.
Station Mark: Both bases are marked by copper discs set in 18 inches of concrete. Each has three reference discs of copper set in concrete. Target signal.

$$
\begin{aligned}
& \text { Grove. } \\
& \text { A. C. Baldwin, } 1912 .
\end{aligned}
$$

On a wooded knob, 2 miles south of Dan Creek and 1 mile west of Williams Peak.
Station Mark: Cross cut in stump of 6 -inch birch, with nail driven in center. Target signal.
Young Creek. A. C. Baldwin, 1912.
Is located at the mouth of Young Creek, on the west bluff. It is due west from the Sourdough cabins about one-eighth of a mile.

Station Mark: A cross cut in a root of an 18-inch spruce; spike driven in the center of cross. Roots extend from east side of tree. Target signal.

$$
\text { Williams. A. C. Baldwin, } 1912 .
$$

On the west spur of Williams Peak, about 1,000 feet from the summit. It is about one mile south of Dan Creek, and about 500 feet above Khrums lode claim.

Station Mark: A hole, with surrounding triangle, drilled in rock in place. Cairn signal.
May Creek.
A. C. Baldwin, 1912.

On a small hill, thickly covered with tall alders, at the head of the east branch of May Creek. It is about 2 miles west of the old saw-mill on Chititu Creek.
Station Mark: A spike driven in a 6 -inch spruce stump. Target signal.
Geolog.
A. C. Baldwin, 1912.

On the ridge on the northwest side of Rex Creek, on the extreme southwest end of the ridge, 500 feet above timberline. This ridge is a spur leading from Williams Peak.

Station Mark: $\frac{3}{8}$-inch hole, with triangle, drilled in rock in place. Cairn signal.

$$
\text { Rex. A. C.Baldwin, } 1912 \text {. }
$$

On a high mountain between Rex Creek and White Gulch, about 3 miles from the forks of these two streams, and about 200 feet from the summit of the mountain.

Station Mark: $\frac{3}{8}$-inch hole, with a triangle, drilled in a rock in place. Cairn signal.

$$
\text { CALAMITY. A. C. Baldwin, } 1912 .
$$

On the high, sharp peak at the head of White Gulch and Calamity Creek. This peak is at the extreme east end of the divide between Young Creek and Chitina Creek.
Station Mark: $\frac{3}{8}$-inch hole, in triangle, drilled in large flat rock. Cairn signal.

Chititu.

A. C. Baldwin, 1912.

On the divide between Chititu and Young Creeks, on the second peak from the west, and about 1,000 feet above timberline. It is about 3 miles south of the Nizina Post Office.

Station Mark: $\frac{3}{8}$-inch hole, in a triangle, drilled in a rock in place. Tripod signal.
Brigham.
On the ridge between Canyon Creek and Young Creek, where the latter swings sharply to the north looking upstream. This ridge is north of the low saddle between the creeks and about 3 miles north of the lake in this saddle. The signal is on a flat knob, which has a conspicuous rock slide on its south and west sides. The highest point of the ridge is about $1 \frac{1}{2}$ miles northeast.
Station Mark: $\frac{3}{8}$-inch hole drilled in rock in place; surrounding triangle. Cairn signal.

Patty.

A. C. Baldwin, 1912

On the highest peak of the divide between Young Creek and Chitina River, and about 4 miles due south from the mouth of Calamity Creek.

Station Mark: Hole, in triangle, drilled in a rock. Cairn signal.

Bulb.
 A. C. Baldwin, 1912

On a dome knob, about $2 \frac{1}{2}$ miles west of the highest peak on the divide between Young Creek and Chitina River, and about 4 miles south and west of the mouth of Calamity Creek.

Station Mark: $\frac{3}{8}$-inch hole drilled in rock in place; triangle around it. Cairn signal.
Eaton.
A. C. Baldwin. 1912.

About $1 \frac{1}{2}$ miles southeast of the highest peak on the divide between Young Creek and Chitina River, on a prominence which breaks off precipitously toward Chitina River.

Station Mark: A hole, in triangle, drilled in a stone set flush with the ground. Cairn of sod.
Head. A. C. Baldwin, 1912.
On the high ridge 3 miles north of Chitina River, about 2 miles west of Canyon Creek and one mile south of the low divide near the head of Young Creek, the divide leading from the bend in Young Creek to Canyon Creek.

Station Mark: A hole, in triangle, drilled in stone set flush with ground. Cairn signal.

$$
\text { Bar. . . A. C. Baldwin, } 1912 .
$$

On a gravel bar of Chitina River, about 3 miles south of the point where the Young Creek trail comes out of the timber on the Chitina, and about 4 miles west of the mouth of Canyon Creek. The station is on a rise, with a few small cottonwood trees nearby.

Station Mark: A hole, in triangle, drilled in a rock set flush with the ground. Pole signal.
Delta.
On a gravel bar of the Chitina River, about one-quarter mile south of point of timber on the delta of Canyon Creek. Station Mark: $\frac{3}{8}$-inch hole drilled in rock set flush with ground; triangle around hole. Target signal.

STREAK.
On a long, flat ridge about 2 miles east of Canyon Creek, and 3 miles north of Chitina River. There is a white rockslide just south of the signal.

Station Mark: A hole drilled in a stone set flush with the ground; triangle around it. Pole signal.
Gibraltar.
A. C. Baldwin, 1912.

On a high, wooded island in the Chitina Valley, about 4 miles east of Canyon Creek and 2 miles east of the only cabin east of Canyon Creek. The island on the north side presents a precipitous wall of rock. It is about 800 feet above the floor of the valley, and is the highest of the islands.

Station Mark: A cross cut in a 6 -inch spruce stump, with a nail driven in the center. Signal.

Delay. A. C. Baldwin, 1912

On top of the high mountain immediately west of the second glacier flowing into the Chitina Valley west of the foot On top of the
Station Mark: A hole, with triangle, drilled in a stone set flush with ground. Cairn signal.
Island. A. C. Baldwin, 1912 .
On a small, wooded island in the Chitina Valley, about 3 miles south of the foot of the second glacier below Chitina Glacier flowing in from the north, and about one-half mile south of a long wooded island, in the valley; there is a small island, "Till," about 1 mile southwest, and a high island known as "Gibraltar" about 3 miles west.

Station Mark: A nail driven in a 7 -inch spruce stump which is about 14 inches high. Pole signal.
Finis.
A. C. Baldwin, 1912.

On the range of mountains between the first and second glaciers below Chitina Glacier flowing into the Chitina Valley from the north. On a knob of a spur running about southwest and about 1,000 feet above timber-line, and 1,500 feet from the western top of the mountain.

Station Mark: $\frac{3}{8}$-inch hole drilled in stone set flush with the ground; hole in center of a triangle. Carin signal.

```
Terminus. A. C. Baldwin,1912.
```

On a terminal moraine of the first glacier flowing into the Chitïna Valley west of the foot of Chitina Glacier. It is about one-eighth of a mile east of the main body of water flowing from the glacier and one-quarter mile from the junction of this stream and Chitina River. Mr. Eaton's main tree-cache is about one-quarter mile southeast.

Station Mark: A hole inside a triangle cut in a large rock 24 by 24 inches. Cairn signal.

$$
\text { Nibs. A. C. Baldwin, } 1913 .
$$

On the southwest spur of the mountain east of Short River Glacier, about 500 feet above timber-line.
Station Mark: $\frac{3}{8}$-inch drill hole in a stone set flush with ground. Triangle around hole.
Снор.
A. C. Baldwin, 1913.

On the small island about 3 miles below the foot of Chitina Glacier, on the south side of the valley.
Station Mark: A deep cross cut in a spruce stump (8 by 12 inches). Nail driven in center of cross.

On a low, wooded knob, on the south side of Chitina Valley, about opposite the foot of the glacier, and just east of the first creek flowing from the south into Chitina River.

Station Mark: Nail driven into a spruce stump.

$$
\text { Chitina River, West Base. A. C. Baldwin, } 1913 .
$$

Eighteen hundred meters from East Base. Azimuth of line East Base to West Base, $116^{\circ} 14^{\prime} 57^{\prime \prime} \cdot 5$.
Station Mark: Mauser cartridge shell in cement in a stone set flush with ground.

$$
\text { Only. A. C. Baldwin, } 1913 .
$$

On a shouder of a cliffy mountain about half-way between Short River Glacier and Chitina Glacier. It is on the north side of the valley and across a deep canyon from a prominent black dome. Station is about 1,000 feet above timber-line. Station Mark: $\frac{3}{8}$-inch hole in a triangle drilled in a large native rock.

Chitina River, East Base. A. C. Baldwin, 1913.
In the Chitina Valley on the north side near the foot of Chitina Glacier, where the north branch of the Chitina enters the wide valley. The station is on the delta built by the small stream coming into the Chitina from the north, and is about one-quarter mile north of a small wooded island.

Station Mark: Mauser cartridge shell in cement in a stone set flush with the ground.

> Shelf.

On a low bench on the north side of the Chitina Valley, about 3 miles east of the foot of Chitina Glacier.
Station Mark: $\frac{3}{8}$-inch hole, within triangle, drilled in a rock.

$$
\text { Bud. . A. C. Baldwin, } 1913 .
$$

On the higher of two rounded knobs on northeast spur of a high mountain on the south side of Chitina Valley, about opposite the two lakes between Logan and Chitina Glaciers, and about 2 miles west of a large river flowing from the south, the main headwater of the Chitina.
Station Mark: $\frac{3}{8}$-inch hole, within a triangle, drilled in a rock in place; signal, cairn with pole.

$$
\text { Eck. A. C. Baldwin, } 1913 .
$$

On a southwest spur of Chitina Mountain, on the first prominence above timber-line. Chitina Mountain is the mountain between Logan and Anderson Glaciers.

Station Mark: $\frac{3}{8}$-inch hole, within triangle, drilled in a stone set flush with the ground.
Fritz. A. C. Baldwin, 1913.
On a prominent low knob on the south side of Logan Glacier between Sled Glacier and the valley of the main headwater stream of the Chitina. Station is about 500 feet above the glacier.

Station Mark: $\frac{3}{8}$-inch hole, within a triangle, drilled in a rock. Signal, cairn with pole.
Walsh.
On a low shelf on south side of Chitina Mountain. It is about half-way between the junction of Walsh Glacier with the Logan, and the west point of Chitina Mountain.

Station Mark: $\frac{3}{8}$-inch hole, within a triangle, drilled in a rock in place. Signal, cairn with pole.

Penn.

A. C. Baldwin, 1913.

On the first bench of a peninsula-like mountain just east of Sled Glacier.
Station Mark: $\frac{3}{8}$-inch drilled hole, within a triangle, in rock in place. Signal, cairn with pole.

$$
\text { Point. A. C. Baldwin, } 1913 .
$$

On the southwest point of Boundary Mountain, between Logan and Walsh Glaciers. Station is about 200 feet above the glaciers.

Station Mark: $\frac{3}{8}$-inch hole, within a triangle, drilled in a stone set flush with ground. Signal, cairn with pole.

$$
\text { Boundary A. A. C. Baldwin, } 1913 .
$$

On a green bench on the south side of Logan Valley, and about 7 miles east of Sled Glacier. Station is 500 feet west of Monument No. 191.

Station Mark: $\frac{3}{8}$-inch hole, within triangle, drilled in rock in place. Signal, cairn with pole.

Blondie.

A. C. Baldwin, 1913.

On the west high peak of Boundary Mountain, with deep saddles east and west.
Station Mark: $\frac{3}{8}$-inch hole, within triangle, drilled in rock.

Senator.

On the more westerly of two high knobs on the east end of Boundary Mountain.
Station Mark: $\frac{3}{8}$-inch hole, within a triangle, drilled in a rock in place. Cairn signal.
Dane. \quad A. C. Baldwin, 1913.
On Boundary Mountain on the first high shoulder about 2 miles east of junction of Logan and Walsh Glaciers. There is a saddle to the east of station.
Station Mark: $\frac{3}{8}$-inch hole, within a triangle, drilled in rock in place. Signal cairn with pole.

Boundary. T. C. Dennis, 1913.

About midway between station Point and the summit of Boundary Mountain, between Logan and Walsh Glaciers, on the summit of a slight rise, and about 2,500 feet above the glaciers.

Station Mark: A 5 -foot cairn.

$$
\text { Slope. .. T. C. Dennis, } 1913 .
$$

About $2 \frac{1}{2}$ miles west of the Line, on the ridge west of the first glacier west of the Line on the south side of Logan Valley, near the north edge of a small prominence about 2,250 feet above the glacier.

Station Mark: A 5 -foot cairn.

$$
\text { Snow. T. C. Dennis, } 1913 .
$$

Almost exactly on the Line, about $1 \frac{1}{4}$ miles south of the south edge of Logan Glacier on the summit of a prominent snowy peak, and about 3,000 feet above the glacier.
Station Mark: A 5 -foot cairn.

$$
\text { DIVIDE. } \quad \text { T. C. Dennis, } 1913 .
$$

On a ridge between two westerly branches of a large glacier joining the Logan Glacier from the south, about 6 miles east of the Line. The point of the ridge is about 4 miles from the Logan Glacier, and the station is on a snow bench about $1 \frac{1}{2}$ miles from the point of the ridge, and about 3,000 feet above the glacier.
${ }^{2}$ No station mark, on account of deep snow.

Black. T. C. Dennis, 1913.

On the summit of the ridge between Logan and Walsh Glaciers, about $4 \frac{1}{2}$ miles east of the Line, and about 3,250 feet above the glaciers.

Station Mark: A 4-foot cairn.

Ace.

T. C. Dennis, 1913

On the ridge immediately west of a very large glacier joining the Logan Glacier from the south about 6 miles east of the Line. The station is on the first prominent point of the ridge running up southwesterly from the bend of the glacier, and about 3,000 feet above it.
No station mark on account of deep snow.

$$
\text { Turn. Dennis, } 1913 .
$$

On a prominent, low peak on the point between Logan Glacier and a large glacier joining it from the south, about 6 miles east of the Line, and about 1,500 feet above the glacier.

Station Mark: A 9-foot cairn.

$$
\text { DUKE. T. C. Dennis, } 1913 .
$$

About $1 \frac{1}{4}$ miles south of east of station Turn on the summit of the same ridge, and about 2,500 feet above Logan Glacier. No station mark on account of deep snow.

$$
\text { SHARP. T. C. Dennis, } 1916 .
$$

On the ridge between Logan and Walsh Glaciers, about $9 \frac{1}{4}$ miles east of the Line. On the more easterly of two knobs forming the summit of the peak, and about 3,250 feet above the glacier.

Station mark: A $4 \frac{1}{2}$-foot cairn.
Sub-End.
T. C. Dennis, 1913.

On a prominent hill on the south side of Logan Glacier, about 15 miles east of the Line. There are four knobs or rises on the summit of the peak, the station being on the second from the south, and about 2,250 feet above the glacier.

Station Mark: A $3 \frac{1}{2}$-foot cairn.
Low.
T. C. Dennis, 1913 .

About 2 miles east of a gap in the ridge between Logan and Walsh Glaciers, 17 miles east of the Line. The station is on the first prominent point on the ridge sloping up easterly from the gap, and is about 2,000 feet above the glacier.

Station Mark: A $3 \frac{1}{2}$-foot cairn.

Sketch No. 1.
265

Sketch No. 2.
266

Sketch No. 3.

Sketch No. 4.

Sketch No. 5.

Sketch No. 6.

Sketch No. 7.

Sketch No. 8.

APPENDIX IV.

SPECIAL EQUIPMENT.

The peculiar conditions met with on some portions of the work resulted in the development of special equipment of various kinds, designed to overcome the difficulties due to these conditions and so to facilitate the work of the survey.

Undoubtedly the most important items coming under this head were the launches built for the survey at Whitehorse in the shipyard of the White Pass and Yukon Route. It became apparent in 1910 that as the work progressed northward, it would become more and more difficult to transport all the necessary supplies along the line, particularly north of the Porcupine River. Inquiry revealed the fact that at certain stages of the water it might be possible to take these supplies up the Porcupine and Old Crow Rivers to the point where the latter river crossed the line, about sixty-five miles north of Rampart House.

Each Government therefore decided to build a launch for this purpose. These sister boats were of the familiar shallow-water, stern-wheel type, and each had a length of 40 feet with an 8 -foot beam, and were designed to draw about 14 inches when light. The Canadian launch was equipped with a 25 -horse power motor, manu-

The United States launch being taken down the Fiftymile River.
factured by the Union Gas Engine Company of San Francisco. Gasolene was chosen in preference to steam power, not because it would have been impossible to procure wood for fuel, but because of the time necessary to cut the wood. With twenty-four hours of daylight per day throughout most of the season, and with a double crew, the launches were able to run continuously day and night, when necessary, and this would have been impossible had it been necessary to stop to cut wood.
The power was transmitted through bevelled gears, and a counter-shaft with two sprocket wheels and chains, direct to sprocket wheels on the wheel axle. The stern wheel was 10 feet in diameter, and originally had eight buckets, the number being later increased to ten to secure a more uniform impulse, and so reduce the vibration. The United States launch was equipped with a slightly heavier and more powerful Doak motor, and a slightly different arrangement of gearing was employed, a jackshaft being used between the counter-shaft and the wheel, so that the chains would run over the transom, instead of through it, as on the Canadian launch.

It was found that, in running, both boats settled by the stern so that they drew from 18 to 24 inches, and as this was excessive, during the first season a dead load had to be carried on the bow to counteract it. During the winter of 1911-12 the trim of both boats was improved by moving the motors forward, and by altering the "set" of the fantail and wheel, with the result that the boats drew only from 16 to 18 inches, and the dead loads on the bows were unnecessary. Although these launches could carry but little freight themselves in addition to their supplies and considerable fuel, they were each capable of handling a 35 -foot scow, the usual cargo being about eight tons, although under favourable conditions much more than this was often carried. To assist in surmounting swift riffles, and in pulling off bars, each launch had a power capstan connected to the motor by a clutch, and about 1,200 feet of $\frac{3}{8}$-inch steel cable. Another launch of about the same size and style was chartered by the United States party in 1911. She had a 20 -horse power motor set across the boat, with long chains leading direct to the

The United States launch Midnight Sun."
stern wheel. The Canadians chartered a small launch for carrying mail and for keeping up communications generally, and this was also used for freighting, as it could handle a barge with from one to two tons of supplies. These four launches made a total mileage of about 18,000 in 1911, and the two survey launches and the mail tender travelled over 12,000 miles the following year.

On many portions of the work, at certain periods, the mosquitos, gnats, and black flies became so numerous that it was absolutely necessary to devise some form of tent which would protect the members of the various parties while in camp. It was found by experience that, aided by a mosquito bar, and wearing gloves, a man could fight these pests by day, provided he could get a good rest each night.

Special type of tent. The sleeping tents, therefore, although of the usual wall type, were made insect proof by having a floor of drill sewn in all round, while the door was oval in shape and closed by a "tunnel," with a draw-string. Each tent usually had six windows of double bobinet, one low down in each wall, and one in each end just under the ridge, these windows being furnished with outside "shutters" for use in bad weather. The tent was suspended to the ridge-pole by tapes, and this not only obviated the necessity of having holes

Mosquito Bar. 23565-18 $\frac{1}{2}$ or sleeves for the ridge, but permitted almost any pole, no matter how crooked or rough, to be used as a ridge, this latter feature being found specially advantageous in districts where good poles were difficult to procure. To save weight and space, these tents were usually made of sail silk, natural shade, or, in some cases, green, for protection from the sun, the weight of a tent 10 feet by 10 feet, with a 3 -foot wall, being about eleven pounds. The packers while on the move used a wedge tent 7 feet square of the same general specifications.

On the Arctic slope, where no poles could be found, and on the glaciers and snow-fields of the southern portion of the line, specially designed tents, 7 feet square, were used, with one portable sectional pole, for which an alpenstock might be substituted if preferred. These tents were similar to the other as to doors, floors, and windows.

Mosquito blankets of drill were tried for the horses, but were only partially successful, for the horses soon tore them off rubbing against trees, or burned both the blanket and themselves by standing too close to the smudges which were made

Mosquito blankets of drill for the horses.
for their benefit. The men's mosquito bars were of the usual pattern, fitting over the crown of the hat with an elastic, and tying under the arms, and though they were very inconvenient, especially on instrument work, they proved to be at times an absolute necessity.

The flies also caused a reversal of working hours on some parts of the line, as they proved to be most active during the comparative cool of the night hours. As this kept the horses continually on the move in an attempt to get relief, camp was often moved at night, allowing the horses to rest and feed during the heat of the day, when the flies were less active. Of course this would have been impossible in a more southerly latitude, where night means also darkness.

Although the ordinary "saw-buck" pack saddle was most generally used, the McLennan and Abercrombie trees each proved to have their special advantages, and were popular with some of the packers. While blankets, tents, oats, flour, cement, and other similar articles were simply slung on the saddles by the ordinary packers' methods before being made fast by the diamond hitch, smaller articles, provisions, and sundries were first packed into " alforjas" of canvas, usually with leather ends, which were easily hung on the horns of the saddles. To protect the contents from crushing, the alforjas were sometimes lined with wood procured from old packing boxes.

The usual dining-table top* was made of canvas, across which ordinary laths had been tacked about one-half inch apart. This rolled up compactly for transportation and made a very serviceable table when stretched over a light frame, which was easily and quickly erected at each camp.

Light sheet-iron cook-stoves were used generally throughout the work, the rigid pattern being found more durable than the folding or collapsible type, especially when entrusted to the tender mercies of the packers. For fly- or side-camps, or on other occasions when it was necessary to cook over an open fire, the "Arizona" camp grate, though at first scorned as a "kid glove" accessory by the old-timers in the country, proved to be a great saver of time and fuel. It consists essentially of a light galvan-ized-iron grid, with folding

A " smudge " near the Arctic Coast.
legs which could be driven into the ground, the whole forming a light but rigid support for cooking utensils over the fire, and when not in use, folding flat so that it could be easily slipped into an alforja, generally between the canvas and the wood lining. On the glacier trips, where no wood was available, stoves burning kerosene or alcohol vapour were used, the stove being made doubly efficient by a protecting shield of aluminum or tin lined with asbestos. This shield both protected the flame from the wind and acted as a reflector, concentrating the heat where most needed.

As to provisions, dry or dried foods were used ${ }^{1}$ wherever possible, and to save weight, every effort was made to carry along as few articles as possible containing water. Thus, butter, condensed milk, and jam were practically the only articles coming under this latter class, except on the glaciers in the higher altitudes, where it was found more feasible to carry cooked "pork and beans" in tins ready to warm up, than to carry fuel enough to cook the ordinary dried beans.

[^81]
APPENDIX V.

RATION LISTS.

The following comparative table shows the quantities and assortments of food used by various organizations in the field. The first six columns are reproduced from " The Manual of Instructions for the Survey of Dominion Lands," ${ }^{1}$ and the seventh column is compiled from the amount of provisions purchased and used by the Boundary Survey in 1910.

The amount of bacon and ham could have been decreased materially had it been possible to estimate with any degree of accuracy the amount of fresh meat procurable in the country during the season, but enough salt or smoked meat had to be taken in to ensure a supply in case little or no game could be procured. ${ }^{2}$

This ration list, of course, does not apply to any special trips, such as the attempt at climbing Mount St. Elias, in which case, as mentioned in the narrative, the rations were strictly confined to the staples, of which only a bare sufficiency was taken along.

[^82]${ }^{2}$ Appendix vi, page 280.
RATION LIST.
Figures for 100 rations, or subsistence for one man for 100 days.

Articles.	Alaskan Parties, U. S. Geological Survey.	National Transcontinental Railway.	Canadian Militia.	C. P. R. Land Department.	Canadian Pacific Railway.	Grand Trunk Pacific Railway.	International Boundary Survey. ${ }^{10}$
Allspice.		$0 \cdot 10$			$0 \cdot 12$	0.07	
Apples, evap		$5 \cdot 80$		$16 \cdot 60$	11.90	$8 \cdot 33$	$9 \cdot 0$
Apricots, evap.		$4 \cdot 16$			$5 \cdot 95$		$3 \cdot 0$
Bacon.........	$71 \cdot 60$	$50 \cdot 00$	$12 \cdot 50$	$66 \cdot 70$	$23 \cdot 80$	41.66	$54 \cdot 00$
Bacon, long clear.						27.77	
Baking powder...	$2 \cdot 90$	$0 \cdot 83$		$3 \cdot 30$	$2 \cdot 38$	$2 \cdot 77$	$0 \cdot 7$
Barley........		1.66			$2 \cdot 38$		
Beans. .	$14 \cdot 30$	$26 \cdot 60$	$12 \cdot 50$	$16 \cdot 66$	$11 \cdot 90$	$27 \cdot 77$	$24 \cdot 0$
Beef, corned.		$26 \cdot 60$				$20 \cdot 83$	
Beef, extract.		$1 \cdot 66$					
Beef, dried..	$2 \cdot 70$				5.95	(8)	
Beef-tea capsules.	$0 \cdot 20$						
Biscuits.......		$20 \cdot 00$	${ }^{(3)}$				
Bread. .			$100 \cdot 00$				
Butter.	$14 \cdot 00$	$15 \cdot 80$	$12 \cdot 50$	$20 \cdot 80$	$14 \cdot 28$	$16 \cdot 66$	19.0
Cabbage.						(8)	$2 \cdot 0$
Candles..		$6 \cdot 66$		$3 \cdot 33$			
Celery salt.	$0 \cdot 04$						
Cereal.	$17 \cdot 90$						$15 \cdot 0$
Cheese.		$5 \cdot 80$	$6 \cdot 25$	$9 \cdot 15$	5.95	$5 \cdot 55$	$2 \cdot 0$
Cherries, canned.					$9 \cdot 60$		
Chocolate and cocoa	$1 \cdot 80$						$1 \cdot 5$
Cinnamon.	$0 \cdot 04$				$0 \cdot 12$	$0 \cdot 14$	
Coal oil. .					$1 \cdot 10$		
Coffee.	$5 \cdot 40$	$3 \cdot 33$	$2 \cdot 08$	$5 \cdot 00$	$9 \cdot 52$	$5 \cdot 55$	$4 \cdot 5$
Codfish.		$5 \cdot 00$			5.95	$0 \cdot 69$	
Corn, canned		$2 \cdot 50$			$19 \cdot 20$		
Corn meal.		$5 \cdot 00$		$10 \cdot 00$	$7 \cdot 14$	$8 \cdot 33$	$1 \cdot 5$
Corn starch.		3.33			$2 \cdot 38$	$\left.{ }^{8}\right)$	$0 \cdot 5$
Cream, condensed ${ }^{11}$.		$5 \cdot 83$					$10 \cdot 0$
Currants..		$3 \cdot 33$			$2 \cdot 38$	$2 \cdot 77$	$1 \cdot 5$
Curry..	$0 \cdot 04$						
Eggs, crystallized.	$3 \cdot 00$						$1 \cdot 0$
Fish, dried....						8.33	
Flour, wheat...	$100 \cdot 00$	$125 \cdot 00$		$133 \cdot 20$	95.24 11.90	$166 \cdot 00$ 13.88	88.0 6.0
Fruit, evap...	$22 \cdot 30$						
Ginger.....	$0 \cdot 04$	$0 \cdot 08$			$0 \cdot 12$	$0 \cdot 27$	$0 \cdot 06$
		27					

RATION LIST-Concluded.

Articles.	Alaskan Parties, U. S. Geological Survey.	National Transcontinental Railway.	Canadian Militia.	C. P. R. Land Department.	Canadian Pacific Railway.	Grand Trunk Pacific Railway.	International Boundary Survey. ${ }^{10}$
Ginger, essence. Gal.		0.08					
Ham........................... .		$33 \cdot 30$		$28 \cdot 30$	$23 \cdot 80$		$17 \cdot 0$
Hops. "		$0 \cdot 20$					
Jam.		$5 \cdot 00$	$12 \cdot 50$			(8)	$4 \cdot 0$
Lard.	. \cdot -	$6 \cdot 60$			9.52	8.33	$3 \cdot 5$
Lemon extract.		$0 \cdot 08$		$0 \cdot 31$	$0 \cdot 21$	$0 \cdot 13$	
Lime juice.. .	$0 \cdot 08$	$2 \cdot 10$					
Lye.					$0 \cdot 48$	0.27	
Macaroni		$0 \cdot 83$			$1 \cdot 20$		$1 \cdot 0$
Marmalade		$1 \cdot 66$				(8)	$2 \cdot 5$
Matches, small boxes.		$4 \cdot 50$	(4)	$2 \cdot 50$	$2 \cdot 5$	$2 \cdot 75$	
Meat......			$100 \cdot 00$				
Milk, condensed.... "		$6 \cdot 60$			$6 \cdot 24$	$6 \cdot 05$	$10 \cdot 0$
Molasses. \qquad pt.		$10 \cdot 00$				${ }^{(8)}$	
Mustard. \qquad	$0 \cdot 42$	$0 \cdot 04$		0.21		0.55	$0 \cdot 25$
Nutmegs.	$0 \cdot 01$	$0 \cdot 05$			$0 \cdot 06$	$0 \cdot 07$	
Oatmeal. "	$16 \cdot 60$			$10 \cdot 00$	$9 \cdot 52$	13.88	
Onions. "	$0 \cdot 54$	$6 \cdot 60$			$4 \cdot 62$		$11 \cdot 0$
Peaches, canned............... "		$6 \cdot 60$			$24 \cdot 00$	${ }^{(8)}$	
Peaches, evap.					$11 \cdot 90$		
Pears, canned.						${ }^{(8)}$	
Peas, split.			$3 \cdot 125$		$4 \cdot 76$	(8)	$3 \cdot 0$
Peas, canned.		$10 \cdot 00$				(8)	
Pea sausages.	$3 \cdot 20$						$2 \cdot 0$
Pepper, black	$0 \cdot 20$	$0 \cdot 36$	$0 \cdot 17$	$0 \cdot 36$	$0 \cdot 24$	0.27	$0 \cdot 25$
Pickles. gal.		$0 \cdot 31$		$0 \cdot 62$	1.43	$\left.{ }^{8}\right)$	$0 \cdot 2$
Potatoes. lb.			$100 \cdot 00$		$95 \cdot 24$	(8)	
Potatoes, evap.................. "	$16 \cdot 10$	$6 \cdot 60$					8.0
Prunes, evap................... ."		6.60			11.90	$16 \cdot 66$	$7 \cdot 0$
Pork. "		$43 \cdot 30$					
Raisins.......... "		$3 \cdot 30$				7.49	$1 \cdot 5$
Rice......... "	$8 \cdot 50$	$5 \cdot 83$			5.95	$16 \cdot 66$	$9 \cdot 0$
Salt. "	$5 \cdot 30$	$5 \cdot 50$	$3 \cdot 125$	$8 \cdot 00$	$4 \cdot 75$	$5 \cdot 55$	$4 \cdot 5$
Sago. .					$2 \cdot 38$		$1 \cdot 0$
Sauce, Worcestershire. bot.		1.66			$1 \cdot 95$	1.66	$0 \cdot 5$
Soap........... lb.		$5 \cdot 00$		$6 \cdot 66$		$5 \cdot 55$	$6 \cdot 0$
Soap, toilet. cake		$3 \cdot 00$.				$2 \cdot 0$
Soda. lb.		$0 \cdot 20$			$0 \cdot 71$		$0 \cdot 12$
Soup, veg. evap.	$1 \cdot 80$	$0 \cdot 26$		$1 \cdot 20$			
Soup, condensed. "		$1 \cdot 66$					$0 \cdot 5$
Strawberries. .							
Sugar. "	$25 \cdot 10$	$33 \cdot 33$	$12 \cdot 50$	$31 \cdot 60$	$35 \cdot 71$	41.65	$64 \cdot 5$
Syrup. gal.		$0 \cdot 40$		$1 \cdot 25$	$1 \cdot 19$		${ }^{(9)}$
Tapioca lb.		$2 \cdot 66$			$2 \cdot 38$	(8)	$1 \cdot 5$
Tobacco, chewing. "		$2 \cdot 50$					
Tobacco, smoking.		$5 \cdot 00$					
Tomatoes, canned.............. "		8.30			$36 \cdot 00$		
Tea........................... "	$3 \cdot 60$	$6 \cdot 66$	$1 \cdot 56$	$3 \cdot 30$	$3 \cdot 55$	$5 \cdot 55$	$3 \cdot 0$
Vanilla extract................ . oz.		$0 \cdot 10$			$0 \cdot 12$		
Vegetables, fresh............... . ${ }^{\text {lb }}$.			$3 \cdot 75$	$5 \cdot 00$			
Vinegar........ gal.	$0 \cdot 18$	$0 \cdot 20$		$0 \cdot 20$	$0 \cdot 24$	$0 \cdot 27$	
Yeast, cake.... lb.		$1 \cdot 60$		1.40	$1 \cdot 50$	$1 \cdot 66$	$0 \cdot 7$

[^83]
APPENDIX VI.

BIG GAME SEEN ALONG THE BOUNDARY.

In this Appendix no attempt has been made to cover the subject in an exhaustive manner. It consists simply of a compilation of notes made in the field by M. W. Pope, of the United States section of the survey, and by Frederick Lambart, D.L.S., of the Canadian section.

Mountain Goat (Creamnis montanus).

Although no mountain goats were seen by any of the Boundary survey parties within 50 miles of the 141st Meridian, scattered bands were found a few miles to the westward of the junction of Skolai Creek and the Nizina River, about 55 miles west of the Boundary near latitude $61^{\circ} 30^{\prime}$. Several males were shot, some of them being very large compared with those in southeastern Alaska, and those shot in September had a great deal of fat on their bodies. These goats were ranging amidst abundance of good feed on a " goat island " entirely surrounded by glaciers.

On several occasions lone " billies" were observed on the steep cliffs to the east of the Nizina River. Also it was reported by trappers at Rampart House that there were goats north of the Porcupine River on the Arctic Range and along the Firth River, but none were seen by members of the

The Mountain Goat. (Creamnis survey parties and the rumours were apparently without foundation.

White Sheep (Ovis dalli).

These beautiful animals were seen at intervals along the 141st Meridian from the northern slopes of Mount St. Elias to within 15 miles of the Arctic Ocean. Frequently they were found in great numbers, especially in the vicinity of White River where many hundreds, in bands of about twenty, were observed daily and many specimens were secured by members of the Boundary survey parties, who never lacked the delicious sheep meat in their camps. As a matter of fact, some of the Boundary work could not have been done as quickly, if at all, had it not been possible to procure this meat on the ground.

They were also seen near Tatonduk River in a broken and mountainous country for a distance of about 35 miles, and a few scattered
specimens were seen, or tracks noted, on two very limited ranges cut off on the north and south by large areas of swamps and wide timbered valleys between the Porcupine and Black Rivers.

Scattered bands were seen amidst good feed along Joe Creek in latitude $68^{\circ} 56^{\prime}$ and on the north slopes of the British Mountains to within 15 miles of the Arctic Ocean. On this Arctic range a great many old sheep skulls and bones were found along the numerous well worn game trails, suggesting that possibly some disease may have recently greatly decreased their numbers, or that more probably they were the result of depredations of the numerous hunting parties sent out in quest of meat to feed the crews of whalers that formerly wintered at Herschel Island.

The few seen and shot on the Arctic range, though gracefully built, seemed dwarfed compared to those procured south of the Porcupine, and weighed a third less than those shot farther south in the vicinity of White River. This is probably due to climatic environment and the scarcity of feed. All these sheep wer: uniformly pure white with the exception of a few dark or black hairs in the tail, and of the many specimens carefully examined only two shot on the British Mountains showed any dark hairs.

> Fannen's Sheep (Ovis fanninni).

These sheep were seen in but one locality along the 141st Meridian. This was for a distance of about seven miles between triangulation stations "View N.E." and "Casca ", about 40 miles north of the Yukon River. At the latter station this species was particularly common and several specimens were secured. They were of various hues, from those with a decided grey saddle and dark tail, and grey hair running down the front of each leg, to white sheep of a faint greyish pattern. The grey and white sheep mingled on the side-hill north of station "Casca" beyond which their range ended abruptly, and neither this species nor any sheep resembling ovis fanninni was again observed along the Boundary Line.

Alaskan Moose
 (Alces gigas).

The moose were found throughout the timbered country from White River north to Firth River. They

were most abundant south of the Yukon about the swamps of Yellow Water Lakes and Scottie Creek, and north of the Yukon along the Nation and Black Rivers. The food most to their liking seemed to be the willows.

They are killed with great regularity by the Yellow Water Indians who still-hunt them at salt licks. As a food supply they are highly prized by these Indians and also by those to the north, around Rampart House.

Near Nation River hundreds of immense moose antlers, which had been shed in the fall, were found along the creeks. One matched pair was picked up which, if mounted, would have had a spread of more than 72 inches.

There were also a great many moose along Kandik River, and a fine specimen was shot at the headwaters of Old Crow River on Ammerman Mountain, but none were seen north of this locality by any of the Boundary survey parties.

A few tracks and evidences of browsing were seen ten miles north of Firth River, which is now the northern limit of their range in the vicinity of the Boundary. A native trapper asserted that at one time their range extended farther to the north and that Eskimos of the coast and Herschel Island on their winter hunting expeditions used to shoot moose on Aspen Creek in latitude $69^{\circ} 03^{\prime}$, but members of the Boundary survey parties saw no tracks or signs of moose here in 1912.

Timber Wolf (Canis occidentalis).

Timber wolves, although rarely seen, exist along the 141st Meridian from the White River to the tundra on the Arctic coast. Their coats vary from dark brown to light shades and from black to very light gray.

In 1910 a band of nine, headed by a large black wolf, came within 50 feet of two packers who had become lost and were unarmed, but after circling several times they disappeared. In the same year, while descending the Black River on a raft, two members of the survey party were surrounded by a large pack of wolves which remained hidden in the bush along the river bank uttering their prolonged deep-chested howls.

On a gravel bar of Kandik River a pack of six wolves contested the approach of a member of the survey to the carcass of a moose which he had shot the previous night, necessitating his return to camp for his rifle. Many skins of these animals, measuring from seven to eight feet in length, are brought annually out of this section by trappers.

Numerous tracks were observed along the mud banks of Old Crow River where the wolves are attracted in the late spring by young geese and ducks. A few scattered specimens were seen near Firth River in close proximity to caribou herds and many mute evidences were noted where the strong robust wolf with its powerful jaws had pulled down the straggling caribou.

Woodland Caribou (Rangifer stonei).

This species of caribou exists along the 141st Meridian from White River to Ammerman Mountain. Its favourite ranges during the summer months are on smooth flattopped mountains. South of the Yukon this species was frequently seen on Beaver Creek and Fortymile River, and north of the Yukon straggling bulls were occasionally seen near Kandik River, one coming within 50 feet of camp, a photograph being obtained of him. On another occasion a herd of about 500 was seen just south of Black

The Woodland Caribou. (Rangifer stonei.) River.

These animals assemble in large bands in the fall, generally about the middle of August, and migrate along the ridges in certain well-defined routes of travel to their winter feeding grounds in the timbered country. Some of these routes cross the heads of Ladue Creek, and Sixtymile and Fortymile Rivers; another runs westward along Rapid River passing about 15 miles north of Rampart House. Up to about the year 1900 the herd which follows this latter route was in the habit of regularly crossing the Porcupine River at Rampart House, which for this reason used to be known by the old traders as a "deer post." It is this caribou more than any other animal which renders human existence possible at Rampart House.

This species of caribou occurs frequently on the flat summits of the mountains surrounding the Old Crow Flats, and many specimens were secured. North of this they were not seen by any of the survey parties.

Barren Land Caribou (Rangifer arcticus).

This wide-ranging species occurs abundantly in the sparsely wooded country from the Arctic Ocean to the Old Crow Flats, very few being seen south of there. Though blending in many characteristics with the woodland type, they are distinguished by their much smaller size and by their smaller and more slender antlers with fewer points. At a certain season of the year, generally in June, they assemble in great herds and feed along the hills along the south bank of the Firth River. Members of the survey parties observed different herds of more than 300 cows and calves and a few bulls uttering the grunting noise which the caribou always makes while travelling. Herds like these while feeding and restlessly wandering over the low rolling hills are easily approached within gunshot.

They were numerous on the tundra between the Arctic Ocean and the barren foothills of the British Mountains. Small scattered bands and individuals were always
in sight, their curiosity bringing them at times to within 100 feet of the pack-trains. Specimens shot here appeared to have a higher brain case than those shot farther south. They are not always startled by the crack of a rifle. For several weeks at this point caribou meat was most plentiful in the camps and a decided lack of energy and endurance, which was felt by most of the members of the parties, was attributed to eating too much of this kind of meat.

Black Bear (Ursus americanus).

Black bears were continually seen and shot from the White River north to the Flats of the Old Crow, probably being most abundant in the vicinity of the Yukon River where many tracks were seen on the mountains and foot-hills. Just north of the Yukon it was not unusual to see as many as six at a time feeding and digging on the fire-swept hills.

The survey parties were greatly annoyed at times by these bears disturbing and scattering the contents of food caches which for certain reasons had not been placed on elevated platforms.

A short distance south of Black River their characteristic trails were conspicuous through the brush on ridges worn by erosion. The underbrush generally gives them ample warning of anyone's approach. Generally they are all black, a few having brown faces. North of Rampart House they become quite scarce, and it is unlikely that they roam north of Old Crow River.

Grizzly Bear (Ursus horribilis.)

Remarkably few grizzlies were seen or shot along the boundary line. In 1910 a large one was encountered in thick bush near Tatonduk River. In the following year a large specimen was shot in the same vicinity. Another was encountered near the bank of Firth River, unfortunately in bush so thick as to make a shot impossible.

A great many tracks of this bear were observed along Aspen Creek, near the northern limit of timber, and evidences were seen of their digging for ground squirrels, but it is unlikely that they range north of this creek. A medium-sized specimen was shot in this locality by a member of one of the Canadian parties.

Barren Ground Grizzly (Ursus internationalis).

The only specimen secured is thus described by Dr. C. Hart Merriam, the noted authority:-

Type: adult, No. 1763 Ottawa Museum. Killed on the Alaska-Yukon Boundary about fifty miles south of the Arctic coast, in latitude $69^{\circ} 00^{\prime}$., July 3, 1912, by Frederick Lambart of the Canadian Boundary Survey.

Skull similar to that of pheonyx but shorter; frontal shield more deeply and broadly sulcate (sides of sulcus rising very gradually) ; postorbital processes thicker and more decurved; orbital rims more elevated (almost everted); sagittal crest lower and more sloping (probably higher and more horizontal in advanced age); palate and postpalatal shelf much shorter; postpalatal notch not truncate; occipito-sphenoid length decidedly less (84 against 96) ; last lower premolar conical and much smaller lacking heel and without trace of posterior sulcus or marginal cusplets (in pheonyx, heel, sulcus, and posterior cusplets are well developed); first lower molar swollen; middle lower molar swollen and convex on inner side.

The Brown Bear (Ursus americanus).
This bear, which seems to be close to the grizzly type ursus horribilis phconyx, was frequently seen on the headwaters of the Chitina River, to the west of the 141st Meridian, in latitude $61^{\circ} 00^{\prime}$, and was also quite numerous on the foot-hills of the Natazhat Range. Tracks of this species of bear on the sand bars sometimes measured 14 inches in length. A large male was shot on the north bank of the Yukon, and two others on the south bank of the Sixtymile, and many large tracks noted.

North of this they were not again encountered until reaching the valley of the Salmontrout River, about thirty miles south of the Porcupine River, where a large bear of this variety compelled a packer to seek safety in a tree for several hours, during which time the bear remained within a hundred feet of the tree. In the same neighbourhood an enormous brown bear was observed chasing several packhorses, which had been unpacked.

They were not again observed, or any tracks seen, until reaching the Firth River, where three were noted, and one of medium size was shot. North of the British Mountains, along Turner River, and the creeks flowing into the Arctic Ocean, many huge bear tracks were observed along the gravel banks and on the glaciered creeks.

GENERAL INDEX.

Horses -	Page		Page
go in via the Tatonduk River, 1911	60	Kandik River-	
hoof-rot	55	Canadian party lands, 1911	60
purchased, 1907	34	monuments set, 1910	54
wintering.	64, 69	supplies, 1912.	75
Horton \& Moore	99	Katrina Creek, supply depot, 1908	38
Hospital, Rampart House	64	Kennicott, Robert.	213
Howling Dog Rock, Porcupine River	227	Ketchum.	213
Hudson's Bay Co..	6, 207	Khromchenko, magnetic observations.	195
explorations.	212	King, Dr. W. F.-	
old supply route	53	Annual Joint Report-	
Rampart House.	227	First.	35
trading.	213	Second	40
		Third.	48
Ice, at the Arctic Coast	73	Fourth	57
Icy Bay...............	96	Fifth Sixth	77
New York Times Expedition (Schwatka)	86	Sixth. Seventh	78 98
Illness-		Eighth.	98
Canadian observ smallpox, 1911.	$\begin{aligned} & 38 \\ & 64 \end{aligned}$	appointed Commissioner.	28, 240
United States assistant, 1912	70	appointment as Commissioner.	18
Illustrations, list of............	11	death of.	200
Index, Special, to geographic positions, elevations descriptions and sketches.	298	field work completed under.... 1887.	200
Indians-		with Mr. Tittmann, takes steps to	
not used on account of smallpox, 1911.	67	Klondike $\begin{gathered}\text { work.. } \\ \text { River }\end{gathered}$	25 219
Chilkat. Chilkoot	213	Klotz, Dr. Otto J.--	
inclined to avoid the survey, 1912.	+ 70	longitude, 1905.	26
refuse to assist with freight, 1910.	54	Kl 1906	
surprise at horses, 1911..........	61	Kluane, Lake- crossed on the ice 1909	
surprise at launch, 1909.	47	crossed on the ice, 1909 McArthur 1900	$\begin{array}{r} 44 \\ 94.215 \end{array}$
"track" trader's supplies	53	Mrail used in 1913	
Wood Initial Point-	214	Klutlan Glacier-	
azimuth to be observed at	23	base camp, Natazhat party, 1913.	83
of the Boundary	23	trail, 1909	46
marked, 1907.	30	Kodiak Island.	205
Innoko River	212	Kutan River trail, 1909.	45
Inspection-		Koidern Valley, trail used in 1909 Koyukuk River	
Arctic Ocean to Porcupine River details.	$\begin{array}{r} 74 \\ 199 \end{array}$	Koyuk k River Kuskokwim River	212, 214
joint party, 1912.	+ 70	Kwikpak River (Yukon)	212
Porcupine River to Yukon River	74		
total number of miles inspected.	100	Labarge. Labarge, Lake-	213
Yukon River to Mt. Natazhat....	81	Labarge, Lake-ice-bound, 1907.	
Intersection, 141st Meridian and Alaska Coas Boundary		ice-bound, 1907. ice breaks up, 1911	
	97	navigation opens. .	50, 53
		supplies go over, 1911	
Joe Creek-		Ladue River-	
inspection party, 1912	70	cache, 1913..	81
topographic work reaches, 1911	64	launch, 1910. topographic party 1008	50 39
vista and stadia work, 1911....	65	topographic party, 1908.	39 40
Johnson, J., B., " Theory and Practice of Surveying ".	180	vista-cutting and stadia, Lady Franklin Bay.........	233
	180	Lafrance, Steamer, sunk and burned, 1911	60
Joint parties-		Laketon, B.C.......	218
inspection. line-projection	70, 81	Lambart, Fred, assistant 1907-1913 . . 29,	8, 68, 80
work to be executed by	31 23	big game...	280
Joint Reports, Commissioners' Annual-		Lapierre House. .	228
First.	35	Latitude-	
Second	40	at the Porcupine River, Turner....	228, 229
Third.	48	at the Yukon River.	224, 233
Fourth	57	monuments........ .	104
Fifth.	67	point of intersection of 141st Meridia	
Sixth.	78	Alaska Coast Boundary.	97
Seventh	98	Launches-	
Eighth.	99	built at Whitehorse, Y.T., 1911.	
Juneau, Alaska.	219	descriptions.	273
Kamloops, B. C	224	fail to get up Black River, 1911.	60,62

Longitude-Con.Sitka-Valdez	Page
	112
telegraphic method prescribed by Convention of 1906 .	16
Lucania, Mount, of Abruzzi identified.	194
Mackenzie. 212	
Mackenzie River. 72, 206, 212, 213, 214, 2	19, 221
Maddren, A. G., U.S. Geological Survey 65, 75	
" Geologic Investigations along the Canada Alaska Boundary "	
Magnetic Stations-	
Mt. St. Elias.	195
observations.	195
Porcupine River, 1889	228
total number.	100
values of magnetic declination	196
Yukon River, 1887	233
Malakhof	212
Malaspina Glacier	86, 96
Malcolm River	
Maps-	
area covered	19
certificate of Commission	193
details of	193
list of, in report	13
of the Yukon River, 1867	213
signed	200
to be engraved on copper, etc	24
to be made	23
Mark, azimuth, at the Yukon River	30
Marking the Boundary Line McArthur, J. J.-	
appointed Commissioner	18, 200
appointment as Commissioner	18
Commissioners' Certificat	109
exploratory trip, 1900	216
named Mt. Steele	194
Sixtymile River, 1902	240
work on the boundary, 1902	25
McCarthy, Alaska-	
parties leave, 1912	77
" 1913	84
party paid off, 1913	83
" Report of an Exploration in the Yukon and Mackenzie basins, N.W.T."	
McDiarmid, F. A.-	
azimuth, 1907	.29, 115
latitude, 1907.	116, 132
longitude, 1906.... 27	110, 133
McDougall's Pass.	215
McGee, John J., Clerk of the Privy Council.	
McGrath, J. E.-	
at the Yukon, 1889-91	25, 225
Edmond's attempt to reac	
Fort Yukon.	231
latitude at the Yukon	132
longitude of 1889-91, results	28, 133
longitude work, 1905.	
magnetic observations	195
Yakutat Bay survey (Mt. St. Elias)	87
McKay, Frank, body found in the Yukon River	32
McLarty, James.	232
McQuesten, Fortymile, Y.T........................ 232	
Memoir 67: Geological Survey of Canada: D. D. Cairnes.	
Men, total number employed.	
Meridian, 141st-	
certificate of Commissioners as to monuments. . 109	
crossing the Yukon and Porcupine Rivers	217
	131

 Mt. St. Elias. 195
 observations. 195
 Porcupine River, 1889 . 228
 total number
values of magnetic declination. 196
Yukon River, 1887............................... 233
Malakhof. 86,96
Malaspina Glacier.
Malcolm River. 86, 70
Maps-
193
certificate of Commissioners. 193
details of . 193
$\begin{array}{ll}\text { list of, in report. } & 13 \\ \text { of the Yukon River, } 1867 \text {. } & 213\end{array}$
signed. 200
to be engraved on copper, etc.................... 24
Mark, azimuth, at the Yukon River. 30
Marking the Boundary Line......................... 23
appointed Commissioner
appointment as Commissioner. 18
$\begin{array}{ll}\text { Commissioners' Certificate. } 109 \\ \text { exploratory trip, } 1900 \text {. } & 10\end{array}$
named Mt Steele 194
Sixtymile River, 1902.............................. . . . 240
McCarthy, Alaska-
parties leave, 1913 . 84
party paid off, 1913 83
"Report of an Exploration in the Yukon and
Mackenzie basins, N.W.T."................214, 227
McDiarmid, F. A.-
azimuth, 1907.. 29, 115
longitude, 1906...... 27, 110, 133
$\begin{array}{ll}\text { McDougall's Pass............................... } 215 \\ \text { McGee, John J., Clerk of the Privy Council } & 18\end{array}$
McGrath, J. E.-
at the Yukon, 1889-91.............................. . 25,225
Fort Yukon. 231
latitude at the Yukon. 132
longitude work, 1905. $28, ~ 26$
magnetic observations
87
McKay, Frank, body found in the Yukon River. .. . 32
McLarty, James...................................... . . . 232
McQuesten, Fortymile, Y.T..........................
Memoir 67:
Cairnes. 65, 75
Men, total number employed.
certificate of Commissioners as to monuments. .
109
elevations along..................................... 131

Old Crow River base of supplies, 1911............................ 5

launches, 1911
1912
monumenting, 1911

Oliver, A. I., assistant 1907-1910	29, 37, 43, 49
magnetic observations	195
Orange Creek, vista opened, 1910	54

Orders in Council-
appointing Dr. W. F. King, Commissioner. 18
Mr. J. J. McArthur, Commissioner 18 creating a neutral strip along the boundary...20, 241
1907. 29
1909
1910.
1912.
Summary
Osar River, Abruzzi lands............................... . . . 89
Pack-horses-
Chitina Glacier, 1913 84
go in via Tatonduk River, 1911 60
hoof-rot, 1910 55
purchased, 1907
34
34
purchased, 103
wintering 34, 40, 50, 69
1907.
Party organization -
Party organization -29
1909. 371909.1911.1911.1912.1913.summary
Pauline, Steamer, White River, 1910
Pearson, J. C., magnetic observationsPeak 9500 of Award.Peak 12430 of Award
Pelly Banks. Pelly Banks.
Pelly River. 12, 214, 218, 219
Peterborough, Ont. 219
" Peter Martin Affair
218
Peters, W. J 215
Peterson, Capt., Steamer Yukon. 226
Phelan, J 27
193
" Photographic Methods and Instrun 193
Photo-topography -1907.1908.3219091909$\begin{array}{r}46 \\ 8385 \\ \hline 85\end{array}$
camera 193
Pier at the Yukon- longitude of 23, 36, 110
observations made at 29, 110
Pinta, U. S. S 219
Plane tables, for topography 212
Point Barrow
Polar Sea (Arctic Ocean). 207
Poletica, Pierre de-
Treaty of 1825 205
Councillor of State 206olice, R. N. W. M. P.-32
Police, R. N. W. M. P.-Con. constable at Rampart House, 1911-12
quarantine for glanders, 1907 64
30
Pope, M. W., big game 280
Porcupine River- descended in scow, 1910 55
227
Half-way Pillar. 228
launches 47, 273
McConnell, R. G. 214
Ogilvie, Wm , 218
reached by Bell in 1842 213
Turner, 1889-90 25, 226
Portland Canal. 207
Positions, geodetic, see Geodetic and Geographic.
Precise levels-
bench marks 181
check on elevation of the Yukon River. 55 126) 55
elevations carried from sea level 131
instrument and rods 100, 18
"Publications of the Dominion Observatory 181
river crossings 23, 182
1908 1909 41
48
turning pins. 180
President of the United States, Proclamation. 22, 241
Publications of the Dominion Observatory": Precise Levels 181
Pyramid Island 219
Quarantine-
smallpox, 1911-1 30
64
Rampart House
first launch. 47
first steamer 62
history. 227
launches north of 273
magnetic observations. 195
McConnell, R. G., 1888. 214
parties arrive, 191160
parties leave, 1911 61
74
parties start south for, 1912 70
smallpox, 1911
supplies, 1912 .Tanana, Steamer, arrives, 191270
to be main base in 1911 50, 55
triangulation party, 1910 53
Turner, 1889-90 47
winter party, 1911-12
228
Ramparts, the, Porcupine River
228
Rapid River
278
278
Ration Lists.................................. 230"Report of a reconnaissance of the Yukon 213

St. Elias Mount-Con. PAGE
207
suggested as starting point for boundary. 89
topography, 1913 85
various expeditions. 86
t. James Mission. 233
St. Michael, Alaska-
Alaska Commercial Co 232, 233
McGrath and Turner, 1889 225
supplies taken in via, 1911 58, 62
t. Michael, Sterner$60,70,221$
St. Petersburgh, meeting at, 1823 206
Salmontrout River-
Old Rampart House. 227 60
229
San Francisco, Cal.
San Francisco, Cal.
Sarah, Steamer, takes parties out, 1911 64
Scottie Creek, McArthur, 1902 240
Schwatka, Lieut., U.S.A.- Deer River (Klondike) 220
descent of the Yukon River. 214
expedition of 1891 215
New York Times expedition to Mt. St. Elias 86
Scribner's Magazine 232Seattle, Wash -longitude.26, 112, 133
supplies purchased, 1911 58
Seward, Wm. H., Treaty of 1867 211
Sheep- 281
white (ovis dalli). 280
Side Streams Navigation Co., Steamer Vidette. 60
Signals used on triangulation 125
Simpson. 212
133Sixtymile River-
McArthur, 1902 240
supply depot, 1908 $\begin{array}{r}37 \\ \hline\end{array}$
work completed to, 1908 40
work extended to, 1907. 39
Skagway, Alaska-
bench mark established by tide gauge 131
precise levels to Monument No. 126. 57, 179
Sketches of triangulation- 298
index to 77kolai Creek, triangulation, 1912
Skolai Pass-
crossed by inspection party, 1913 82
Schwatka. 215
triangulation. 45, 75
Smith, Edwin, Assistant, C. \& G. Survey.26, 27, 110
Smithsonian Institution 213
Smithsonian Reports, 1861 213
213
Snag Creek-
Peters and Brooks 215
supplies not found, 1909 39
supply depot, 1908 38
used by parties coming out, 1910
215
215
Southeast Alaska datum 133
Spanish expeditions to Alaska 205
Special equipment 273
Special Index, positions, elevations, etc 298
Spring-Rice, Sir Cecil 19
Stadia work-
1907.32

Stadia work-Con.	Page
1908	40
1909	47, 48
1910	49
1911	60, 65
1912	71
comparison of results	183
description of method	183
errors.	184
total mileage, summary	100
Statistical Chart.	101
Statistical Table.	100
Stephens Passage	206
Stewart, A. G.-	
Stikine River.....	214, 218, 219
Stoekl, Edouard de, Treaty of 1867	211
Stoves.	276
Stringer, Bishop	74
Subsistence-	
distribution of supplies, 1908	38
" ${ }^{\text {d }} 1909$	44
" " 1910	50
" "، 1911	58
ration lists.	278
supplied by the Canadians, 1907.	31
Supplies-	
additional purchases, 1911	60
base at Kandik River, 1912	75
" Old Crow River, 1912	70
" Tatonduk River, 1912	75
Black River, 1911.	59
depot on Sixtymile River, 1908	37
distribution of, 1908.	38
" 1909.	44
distributed by winter party, 1911-12.	66
for a winter party	66
Ladue Creek and Canyon City, 1913	81
Old Crow River, 1911	59,62
On Ladue Creek, 1910	50
on Snag Creek not found, 1909	39
purchased, 1911........	58
Rampart House, 1910	53
" 1911	58
" 1912	69
Surprise Creek, 1911-12	66
Yellowwater Lakes.	44
Surprise Creek, supplies taken to	66
, Surveys-	
cost of.	16
prior to Convention of 1906	25
Sushitna River.	212
Susie, Steamer.	. 55, 70
Tables of geographic positions.	132
Taku River.	215
" Talcott's method ", latitude at Yukon R	116
Tanana, Alaska, supplies purchased, 1911	60
Tanana River...	.212, 213, 214
Tanana, Steamer-	
on the Porcupine River, 1911.	62
parties board at Circle, 1912.	70
supplies brought in by, 1911.	66
Tatonduk River- -	
base of supplies, 1910	51
Ogilvie, 1888...	215
parties land, 1910	51
supplies, 1912.	75
Susie, Steamer, picks up parties,	55
Telegraphic determination of longitude at the Yukon, 1906. details.$.26,35,36,133$	

White River-Con. PAGE	
horses wintered, 1908-9	40
" 1910-11	50
1911-12	64
line-projection, 1908	38
Natazhat party comes out, 1913	84
Ogilvie, 1887	219
parties land at mouth, 1908	38
supplies taken in, 1908	38
U.S. Geological Survey	215
White sheep (ovis dalli).	280
Whymper.	213
"Travel and adventure in the Territory of Alaska '". 212, 213	
Winter party, 1911-12	65
personnel	103
Wolf, timber, (canis occidental	282
Wolverine Creek, trail, 1909	45
Wood Indians	214
Woodland caribou (rangifer stone	283
Wrangell, Governor	212
Wrangell, Mt.	96
Yahtse River	96
Yakutat Bay-	
J. E. McGrath, 1892	87
Port Mulgrave, magnetic observat	195
Yellowwater Lakes, supply depot, 1909	44
"Yukon-Alaska International Boundary.' D. D. Cairnes. $65,75$	
Yukon Datum-	
connection with Southeast Alaska	132
defined	132
Yukon Government, aid re smallpox	
Yukon River -	
azimuth at, 1907	29, 30
base measured, 1907	32
check on assumed elevation, 1910.	55
early explorations	212
elevation assumed	32
first steamer	216
longitude at, 1906	27, 29
magnetic observations	195
McGrath 1889-91, details	231
141st Meridian crossing.	17, 218
Ogilvie, 1887-8, details	219
parties go in over ice, 1907	29
U.S. Geological Survey	215
Yukon sled. 22 21, 226	
Zagoskin, Lieut	21

SPECIAL INDEX.

Index to positions, elevations and descriptions of monuments, and of triangulation and line-projection stations; also to sketches on which the monuments or stations may be found.

	Position.	Ele-vation.	De-scription.	Sketch.		Position.	Ele-vation.	De-scription.	Sketch.
	Page.	Page.	Page.	Page.		Page.	Page.	Page.	Page.
A. of the Boundary (Mon. No. 109).	272	106		268	Bona, Mount, 1913	158	158		271
" A " Mountain.	162	162		172	Borealis, 1912.	140	140	242	265
Ace, 1913.	164	164	264	272	Boulder, 1912.	160	160	261	271
Airs, 1909.	154	154	256	270	Boundary, 1913.	164	164	264	272
Albion, 1911	141	141	244	265	Boundary " A ", 1913.	163	163	263	272
Alp, 1913.	164			272	Boundary Astronomical Station, 1906..	150		252	
Arch, 1910.	145	145		267	Boundary " B ", 1913.	163	163		
Arch 2, 1910	144		248	266	Boundary, cairn east of, 1913	163	163		
Arctic, 1910.	145	145	248	267	Boundary, Little, 1909.	155	155		271
Arden of the Boundary	171	178		267	Boundary, signal on, 1909	156			
Asa.	174	108		269	Brigham, 1912.	160	160	261	272
Asp, 1909.	149	149		268	Brooke, Mount, 1913	157	157		
Aurora, 1912.	140	140	242	265	Brown, 1908.........	153	153	255	269
					Bud, 1913.	162	162	263	272
" b ".	143				Bug, 1912.	140	140	243	265
B_{21} of the Boundary (Mon. No. 105)	172	106		268	Bulb, 1912.	160	160	262	272
Baby, 1907	151	151	253	269	Bump, 1908.	153	153	255	269
Back, 1909.....	148	148	250	268	Burnt Hill, 1909	157	157	259	271
Back, sharp peak east of, 1909.	148				Bush, 1909.	149	149	251	268
Backhouse, 1912............ . .	140	140	243	265					
Bagley, U.S.G.S., 1907	151			269	C. of the Boundary.	173	178		268
Bald, 1907.	150				$\mathrm{C}_{21} 1$ of the Boundary.	172			268
Bald, 1913.....	178	178		271	Cache, 1909...	155	155	258	271
Bald of the Boundary	172				Calamity, 1912.	160	160	261	271
Bald Top, 1913.	164			272	Cairn, U.S.G.S., 1907.	150	150		268
Baldy, 1907.	151	151	253	269	Canalaska, Mountain, 1910.	144	144	247	266
Baldy, Little, 1913..	151	151			Canyon, 1907.	151	151		269
Bar, 1912...	161	161	262	272	Casca, 1910..	146	146	250	267
Bare, 1907.	150	150	253	269	Castle, 1909...	148	148	251	268
Barney, 1909.	148	148	251	268	Castle Peak, 1910.	143			266
Barren, 1911.	143	143	245	266	Castle Ridge-				
Battle, 1910.	144	144		266	east end, 1910.	143			266
Baultoff, 1909...	154	154	257	270	west end, 1910.	143			
Bear Mountain, 1909.	155			271	Center, 1909....	155	155	258	271
Beaver, 1909.	154	154	257	270	Cetera of the Boundary	165	104		165
Beaver Peak, 1909.	158	158		271	Change, 1910,	146	146	249	267
Bedrock, 1907....	151	151	254	269	Charlie, 1913..	152	152		
Bench, 1910..	146	146	249	267	Chasm, 1910.	144	144	247	266
Bend, 1909.	158	158	259	271	Cherry, 1911	142	142	245	266
Bill, 1908..	152	152		269	Chief, 1909..	148	148	251	268
Billie, 1911.	142	142	244	266	Chimney Mountain, 1912...	159	159		271
Birch, 1909	149	149	\ldots	268	Chisana, peak west of, 1909.	154	154		270
Black, 1908.	153	153	256	269	" peak east of, 1909..	154	154		270
Black, 1913.	164	164	264	272	Chitina, 1913.	162	162		
Black Eagle, 1909.	157	157	259	271	Chitina 2, peak southwest of, 1912.	163	163		
Black River, 1910...... .	145	145		267	Chitina Mountain, top of 1st peak, 1912.	162			
Blackburn, Mount, 1912..	160	160		271	Chitina Mountain, peak northwest of,				
Blank Peak, 1909.	156	156		271	$1912 .$	163	163		
Blondie, 1913.	163	163	263	272	Chitina River, East Base, 1913.	162	162	263	272
Blow, 1909............	149	149	251	268	Chitina River, West Base, 1913.	161	161	263	272
Blow, peak east of, 1909.	149			Chitistone, 1912.	160	160	261	271
Blue, 1910.	146	146	249	267	Chititu, 1913.	160	160	261	271
Bluff, 1912.	159			271	Chop, 1913..	161	161	262	272
Bo, 1913........	157	157	259	271	Chris, 1913.......	163	163		

Index to positions, elevations and descriptions of monuments etc.-Continued.

-	Position.	Ele-vation.	De-scription.	Sketch.		Position.	Ele-vation.	De-scription.	Sketch.
	Page.	Page.	Page.	Page.		Page.	Page.	Page.	Page.
Circle, 1910.	145	145	248	267	Eagle Creek, peak between the forks of,				
Close of the Boundary	170			267	1909.	149			
Cloud, 1913.	156	156			Eagle Peak, 1909.	149	149	252	268
Coal, 1912.	159	159	260	271	East, 1909.	148	148		268
Comb, 1911.	142	142	245	266	Eaton, 1912.	161	161	262	272
Comet, 1910	146	146	250	267	Eccentric No. 32.				269
Cone, 1910.	143	143	246	266	" No. 46.	175			270
" peak east of, 1910.	143				Eck, 1913.	162	162	263	272
Cone-shaped peak, 1909.	148				Ed, 1909.	154	154	257	270
Cone Mountain, 1911...	142			265	Edward, 1910.	152	152		
Conibear, Mount, 1912.	140				Elbow, 1913.	164			
Constantine, Mount, 1913.	164	164			Eldridge (U.S.G.S.), 1907	149			268
Control, 1910.	145	145		267	Ella, 1909..	154	154		270
Coral, 1911.	142	142	244	265	Empire, 1912.	141	141	243	265
Crag, 1907.	152	152	254	269	End, 1909.	158	158	259	271
Crag, 1912.	162	162			Et of the Boundary	165	104		265
Crag, 1913.	157	157	259	271					
Crossing, 1907.	$\left\{\begin{array}{l}150 \\ 173\end{array}\right.$	150							
Crossing, 1913.	178	178			F of the Boundary (Mon. No. 118).	173	107		269
Crow, 1909.	148	148	251	268	F_{1} of the Boundary (Mon. No. 97)..... .	171	106		267
Cub, 1909..	156	156	258	271	F_{1} Ridge, 1909..	146			
Curtain Peak, middle, 1913	157	157		271	" peak northwest of, 1909.	146			
" " west, 1913...	157	157		271	" peak south of west of, 1909.	147			
Curve, 1910............. .	145	145	249	267	Fall of the Boundary.	168			266
Cut-in, 1910.	142	142		266	Far of the Boundary.	170	178		
Cut-in, 1911.	146	146		267	Finis, 1912.	161	161	262	272
					Fire, 1910..	146	146	249	267
					Fire Hill, 1910.	144	144	246	266
D of the Boundary (Mon. No. 114)....	173	106		268	Firth, 1911..	141	141		265
D_{1} of the Boundary.	172	178		268	Firth River, North and South Bases, 1911	141	141		265
Dalton, 1909.	156	156	258	271	Fishing, 1910.	145	145	249	267
Dane, 1913....	163	163	263	272	Flag, east, 1909.	156	156		271
D'Arcy of the Boundary.	171	. .		267	" west, 1909.	156	156		271
Dark, 1913.	156	156		271	" No. 5, 1909.	154	154		270
Dave, 1909.	154	154	256	270	" No. 6, 1909.	154	154		270
Delay, 1912.	161	161	262	272	" No. 7, 1909.	154	154		270
Delta, 1912..	161	161	262	272	" No. 8, 1909.	154	154	. . .	270
Demarcation, 1912.	140	140	242	265	Flat, 1908..	153	153	256	269
Demarcation Point, landward end, 1912.	140			265	Flat 2, 1910..	144	144	247	266
Dennis Photo, 1913.	163	163		272	Flat Top, 1909.	155	155	258	271
Diablo, 1910....	146	146	267	Foothill, 1912..	159	159	260	271
Divide, 1907.	152	152	254	269	Fort, 1910....	145	145	248	266
Divide, 1913.	164	164	264	272	Fortymile Dome (U.S.G.S.), 1907.	150	150	253	269
Doc, 1911..	143	143	245	266	Fra-wa-pe, 1908............... . .	153	153	255	269
Dome, 1912.....	161	161	272	Fred, 1908....	152	152	255	269
Dome of the Boundary.	170	178		267	Frederika, 1912.	159	159	260	271
Dome-shaped Mountain, 1911.	142			266	Frederika Mountain, 1912.	159	159		271
Don, 1913..	161	161	263	272	Fritz, 1913..	162	162	263	272
Doodle, 1911..	142	142	244	265	Fulcrum, 1912.......	159	159	260	271
Double Peak, 1912.	141	141		265					
Duke, 1913.........	164	164	264	272					
					G of the Boundary (Mon. No. 126)	174	107		269
E of the Boundary (Mon. No. 115).....	173	107		268	G_{1} of the Boundary	171			267
E_{1} of the Boundary (Mon. No. 99)	171	106		267	Gable, 1913.	157	157		271
E_{1}, craggy peak northeast of, 1909.....	147				Game, 1909..	148	148	251	268
E_{1}, Mountain southwest of, 1909.......	147				Geolog, 1912.	160	160	261	271
E_{1} Mountain, summit, 1909...........	147				George, 1909......	149	149	252	268
E_{1}, reddish peak east-southeast of, 1909..	147				George, 1913.	164			272

Index to positions, elevations and descriptions of monuments, etc.-Continued.

- .	Position.	Ele-vation.	De-scription.	Sketch.	-	Position.	Ele-vation.	De-scription.	Sketch.
	Page.	Page.	Page.	Page.		Page.	Page.	Page.	Page.
Gibraltar, 1912	161	161	262	272	John Bull, 1907.	150	150	253	269
Glacier, 1912 .	159	159	260	271	Junction, 1908..	152	152		269
". northeast end of, 1909.........	158	158		271	Junction 2, 1910	144	144	247	266
point on, 1909	158			271	June, 1911.....	143	143	246	266
". west end of, 1909.	158			271					
Goat, 1912	159	159	260	271					
Gold, 1907. .	151	151	253	269	K of the Boundary (Mon. No. 142)	175	107		269
Gofer, 1912.	159	159	260	271	K_{1} of the Boundary (Mon. No. 73).....	169	105		267
Greenough, Mount, (Elephant Mt., 1911)					Kandik, 1910.................. .	146	146	249	267
1912, east and west peaks.	141	141		265	King, Mount, 1913.	163	163		272
Grove, 1912.............	160	160	261	271	Kite, 1910.	144	144	247	266
Grub, 1909	147	147	250	268	Kletsan, 1909.	156	156	258	271
" high pinnacle west of, 1909......	147				Klutlan, 1913.	157	157	259	271
Gun, 1911.............................	143	143	245	266	Knob, 1912.	161			272
					Knob, 1913.	161	161		272
					Knoll, 1907.	149	149	252	268
H of the Boundary (Mon. No. 127)	174	107		269					
H_{1} of the Boundary (Mon. No. 86).....	170	106		267					
Halley, 1910	146	146	250	267	L of the Boundary (Mon. No. 149).....	175	108		269
Harris, 1913.	155	155	258	271	L_{1} of the Boundary (Mon. No. 68) ..	169	105		267
Head, 1912	161	161	262	272	Ladue, 1908....	152	152	255	269
Herschel Island, highest point, 1912....	140				Lake, 1910.	144	144	247	266
High Dome, 1911	142			265	Lambart, Mount, 1909	156	156	259	271
High Peak, 1911..	140				Laura, 1909.	154	154		270
High Rocky Peak, 1909	147				Lava, 1909..	155	155		270
Highest peak near Line, near Arctic Coast, 1912	141	141		265	Liberty, 1907 Lime, 1909	150 158	150 158	253 260	269 271
Hi-yu, 1909	148	148	251	268	Lime, 1910.....	147	147	250	267
Hog, 1909..	149	149	252	268	Lime Peak, southwest, 1909	159	159		271
Hog Ridge, peak east end of, 1909	149				Lime, Southwest, 1909				267
Holmes, 1909	157	157	259	271	Little Baldy, 1913...	151	151		271
Holmes Creek, 1st and 2nd peaks west of, 1909	157	157		271	Little Boundary, 1909 Lode, 1907.	$\begin{aligned} & 155 \\ & 152 \end{aligned}$	$\begin{aligned} & 155 \\ & 152 \end{aligned}$	254	269
Horse of the Boundary	171			267	Logan, Mount, 1913, east and middle				
Hot, 1912....	140	140		265	domes.	163	163	272
Howard, 1910	153				Lone, 1909	149	149	251	268
Hug, 1909..	149	149	251	268	Lone, 1910.... .	144	144	248	266
Hug, peak east of, 1909	149	\ldots		Lone Ridge, peak east end of, 1909......	149			
Hump, 1909.	155	155	257	271	Loop, 1907.... .	150	150	252	268
Hyacinthe, 1910......................	153				Lost, 1910	146	146	250	267
					Low, 1910	145	145	249	267
					Low, 1913.............	164	164	264	272
I of the Boundary (Mon. No. 133)..... .	174	107		269	Lucania, Mount, 1913.	164	164	272
I 1 of the Boundary, north................	170				Lynx, 1911............................ . .	142	142	244	265
" " south............... . .	174								
Ice, 1912.. ${ }^{\text {a }}$	140	140	242	265					
Ice, 1912...	158		.	271	M of the Boundary	175			
Igloo, 1910..	145	145	248	267	M_{1} of the Boundary, north...........	169			266
Incog, 1911.	141	141	244	265	M_{1} of the Boundary, south (Mon. No.				
Inter, 1913..	162	162	272	150).	175	108	\ldots	269
Interior, 1908.............	152	152	255	269	Mar, 1912	161	161	272
Island, 1912........................ . .	161	161	262	272	Marmot, 1907	151	151	253	269
					May Creek, 1912.............	160	160	261	271
					McArthur, Mount, 1913.	164	164		
J of the Boundary.	174			269	Mesa, 1910.	145	145	248	266
J_{1} of the Boundary (Mon. No. 77).....	170	106		267	Mick, 1908	153	153		270
Jay, 1909	147			268	Middle, 1912	161	161		272
Jenerk, 1913.	156	156	258	271	Miller, 1907. .	151	151	254	269
Jim, 1911.	142	142	244	265	Minnesota, 1907.	151	151	254	269
Joe, 1909...	154	154	257	270	Mirror, 1909..	154	154	256	270

Index to positions, elevations and descriptions of monuments, etc.-Continued.

Index to positions, elevations and descriptions of monuments, etc.-Continued.

	Position.	$\begin{gathered} \text { Ele- } \\ \text { va- } \\ \text { tion. } \end{gathered}$	$\begin{gathered} \text { De- } \\ \text { scrip- } \\ \text { tion. } \end{gathered}$	Sketch.	-	Position.	$\begin{aligned} & \text { Ele- } \\ & \text { va- } \\ & \text { tion. } \end{aligned}$	$\begin{array}{\|c\|c} \text { De- } \\ \text { scrip- } \\ \text { tion. } \end{array}$	Sketch.
	Page.	Page.	Page.	Page.		Page.	Page.	Page.	Page.
Monuments-	$\int 106$	106	106	268	Monuments-Con.	$\int 107$	107	107	269
No. 102.	(192)				No. 152.	\175			
103.	"	"	"	"	153.	"	"	"	"
104.	"	"	"	"	154.	"	"	"	"
105.	"	"	"	"	155.	"	"	"	"
106.	"	"	"	"	156.	"	"	"	"
107.	"	"	"	"	157.	" ${ }^{\text {c }}$	"	"	"
108.	"	"	"	"	158.	(108	"	"	"
109.	"	"	"	"		(176)			
110	"	"	"	"	159.	"	"	"	"
111.	"	"	"	"	160	"	"	"	"
112.	"	"	"	"	161.	"	"	"	"
113.		"	"	"	$162 .$.	"	"	"	"
	$\mid 173\}$				163.....	"	"	"	"
114..	"	"	"	"	164......	"	"	"	"
114 A .	$\{107\}$	107	107	269	165.	"	"	"	"
	$\left\{\begin{array}{l} 173 \end{array}\right\}$				166....	"	"	"	
115..	"	"	"	"	167	"	"	"	"
115A.	"	"	"	"	$168 .$	"	"	"	"
$116 .$.	"	"	"	"	169	"	"	"	"
117.	"	"	"	"	170......	"	"	"	"
118.	"	"	"	"	171.	"	"	"	"
118A.	"	"	"	"	172.	"	"	"	"
119.	"	"	"	"	173.	"	"	"	"
120.	"	"	"	"	174.	"	"	"	"
121.	"	"	"	"	175.	¢ 108 \%	"	"	"
122.	"	"	"	"		(177)			
123.	"	"	"	"	176..	"	"	"	"
123 A .	"	"	"	"	176A.	"	"	"	271
$124 .$	"	"	"	"	177.	"	"	"	
$125 .$	"	"	"	"	178.	"	"	"	,
125A.	\{107	"	"	"	179.	"	"		"
	\{174\}					"	"		
126..	"	"	"	"	181.	"	"	"	"
126A.	"	"	"	"	182.	"	"	"	"
127.	"	"	"	"	183.	"	"	"	"
128.	"	"	"	"	184......................... .	"	"	"	"
129.	"	"	"	"	185..........................	"	"	"	"
130.	"	"	"	"	186.	"	"	"	"
131.	"	"	"	"	187.	$\int 109$	109	109	"
132.	"	"	"	"		(177			
133.	"	"	"	"	187A.	"	"	"	"
134.	"	"	"	"	189.	\{ 109	"	"	272
135.	"	"	"	"		\{178\}			
136.	"	"	"	"	190..........................	"	"	"	"
137.	"	"	"	"	191.	"	"	"	"
138.	"	"	"	"	Moose, 1907.	150	150	253	269
139.	,	"	"	"	Moosehorn, 1908.	153	153	256	269
140.	$\left\{\begin{array}{l} 107 \\ 175 \end{array}\right\}$	"	"	"	Moraine Creek, end of first ridge north of, 1909.	158	158		271
141.	"	"	"	"	Mosquito, 1912.......................	140	140	243	265
142.	"	"	"	"	Moss, 1907....	151	151	254	269
143.	"	"	"	"	Mush, 1909.	147	147	250	268
144.	"	"	"	"					
145.	"	"	"	"	N of the Boundary (Mon. No. 153) ..	175	107		269
146.	"	"	"	"	N_{1} of the Boundary...	169			266
147.	"	"	"	"	N. A., 1912.	144			266
148.	"	"	"	"	$\text { N. B., } 1912 .$	144			266
149.	$\left\{\begin{array}{l}108 \\ 175\end{array}\right\}$	108	108	270	N. C., 1912.........................	144			266
	(175)				N. D., 1912..	145			267
$150 .$.	"	"	"	"	N. E., 1912....	145			267
151...		"	"	"	\| N. F., 1912............................	146		.	267

Index to positions, elevations and descriptions of monuments, etc.-Continued.

	Position.	Ele-vation.	De-scription.	Sketch.	-	Position.	Ele-vation.	De-scription.	Sketch.
	Page.	Page.	Page.	Page.		Page.	Page.	Page.	Page.
N. G., 1912	146			267	Penn Mountain, 1913	163			272
Nassau, 1910.	143	143	246	266	Pepper, 1911.	141			265
Natazhat, Mount, black rock between					Pete, 1909.	149	149	252	268
peaks, 1909	156	156		271	Pin, 1911.	142	142		266
" east peak, 1913............... . .	156	156		271	Ping Pong, 1909.	157	157	259	271
" west peak, 1913.............	156	156		271	Pinnacle, 1909.	148	148		268
" 1st peak west of, 1909.	156	156		271	Plateau, 1907.	150	150	252	268
" 2nd " ".	156	156		271	Point, 1908...	153	153	255	269
" 3rd " "	156	156		271	Point, 1913....	163	163	263	272
" 4th " "	156	156		271	Point on Line, 1913	178	178		271
" 5th " "	156	156		271	Polar, 1912.	140	140	242	265
Nation, 1909.	147	147	250	267	Porcupine, 1911.	143	143	246	266
Near of the Boundary.				267	Porcupine River, East and West Bases				
Needle Peak, 1909.	154	154		270	1911..	144	144	247	266
Nibs, 1913........	161	161	262	272	Porky, 1913.	164			272
Niggerhead, 1909	154	154	257	270	Porky, Mount..	163			272
Nikolai, 1912.	160	160	260	271	Porky, Photo, 1913	163	163		272
Nikolai Peak, 1912	160				Potato Hill, 1911...	142			265
Nit Mountain.				266	Prow, 1910......	145	145		267
Nizina, 1912.......	160	160	260	271	Ptarmigan, 1907	151	151	254	269
Nizina River, Northeast and Southwest Bases, 1912.	160	160	261	271	Pyramid, 1913..	163			
Northwest Range, 1911.................	142			265					
No. 20, 1910	144	144		266	Q of the Boundary (Mon. No. 161)......	176	108		270
Nut, 1909.......	149	149	252	268	Q_{1} of the Boundary	167			266
O of the Boundary.	176			270	R of the Boundary	176			270
O_{1} of the Boundary.	168			266	R_{1} of the Boundary	167			266
Ocean, 1912.	140	140	242	265	R_{6} of the Boundary.	173	178		269
Odell, 1908.	152	152	255	269	Rabbit, 1909.	155	155	257	271
Oh-ti, 1908....	153	153	255	269	Rampart, 1910..........	144	144	247	266
Old Crow, 1911.........	142	142	245	266	Rampart storehouse flagstaff, 1910.....	143	\cdots		266
Old Crow Mountain, 1910.............. .	143	143		266	Rapid, 1911..........	143	143		266
Only, 1913...	162	162	263	272	Reaburn, 1911-12	141	141	243	265
Orphan, 1911.	143	143	245	266	Red, 1909...	148	148	251	268
					Red Mountain, 1913...	162	162		272
					Regal Mountain, 1912	159	159		271
P of the Boundary (Mon. No. 160)......	176	108		270	Reilly, 1913..........	151	- 151		
P_{1} of the Boundary	168			266	Republic, 1912	141	141	243	265
Pack, 1909.......	148	148	251	268	Rex, 1912....	160	160	261	271
Pass, 1912.........	159	159	260	271	Ridge, 1908.	152	152	255	269
	140	140	242	265	Riggs, 1911.........	141	141	244	265
Pass, 1913...	164			272	Riggs, Mount, 1913.	157	157		271
Pasture, 1911....................... .	142	142	245	266	River, 1907.........	150	150	253	269
Path, 1907.................	150	150		268	Rock, 1911......	143	143	- 266
Patty, 1912...	160	160	262	272	Rohn, 1912........	159	159	260	271
Peak No. 1, 1909............	158	158		271	Round, 1908	152	152		269
$3,1909$	158	158		271	Rover, 1910.	145	145		267
$5,1909$	158	158		271	Rupe, 1909..................	153	153	256	270
$6,1909$	158	158		271	Russell (U.S.G.S. "Y"), 1912.........	158	158	259	271
$7,1909$	158	158	. .	271					
B, 1912 .	159	159	271					
" C, 1912....	159	159		271					
" D, 1912.	159	159		271	S of the Boundary.	176			270
$" F, 1912 .$	159	159		271	S_{1} of the Boundary..	166			265
$\text { " G, } 1912 \text {. }$	159	159	271	St. Elias, Mount, 1913	164	164		272
$" \mathrm{H}, 1913 .$	159	$\ldots .$		271	" " west shoulder, 1913...	164	164		272
" X, 1913.........................	159	159		271	Salmon, 1910.....	145	145	248	266
Penn, 1913........................... .	163	163	263	272	Sauerkraut, 1908......	153	153	256	270

Index to positions, elevations and descriptions of monuments, etc.-Continued.

	Position.	Ele-vation.	De-scription.	Sketch.	-	Position.	Ele-vation.	De-scription.	Sketch.
	Page.	Page.	Page.	Page.		Page.	Page.	Page.	Page.
Sawback, 1908	153			270	Table Mountain, 1913.	163			
Scoria, 1909.	156	156	258	271	Talus, 1909.	148	148		268
Scottie, 1908.	153	153	256	270	Tanana, 1908.	153	153	256	270
Scratch, 1910.	146	146	249	267	Ted, 1909...	155	155		271
Seal, 1910....	146	146	249	267	Terminus, 1913	161	161	262	272
Senator, 1913.	163	163	263	272	Thumb, 1913.	162	162		272
Sentinel, 1912	159	159	260	271	Till, 1912...	161	161		272
Sentinel Ridge point on, 1912.	159	159		271	Timber, 1908.	152	152		269
Shag, 1913.................	162	162		272	Tiny, 1911	142	142	245	266
Shark, 1911.	141	141		265	Tip, 1911. .	142	142	245	266
Sharp, 1913.	164	164	264	272	Tit, 1910	144	144	247	266
Sharp Cone, 1911.	141			265	Tit, 1913.	162	162		272
Shed Mountain, 1909	147			267	Tit, Crag Ridge, 1912.	162	162		
Sheep, 1909....	155	155	257	271	Tom, 1910........................	146	146	249	267
Shelf, 1913..	162	162	263	272	Topo, 1910..... .	145	145		267
Silence, 1909	155	155		271	Trail, 1907	150	150	252	268
Silver, 1911.	141	141	244	265	Trap, 1911.... .	142	142	245	266
Siwash, 1911.	141	141	244	265	Traver, 1909......	156	156	258	271
Sixty, 1913...	152	152	\ldots		Trimmed, 1910	146	146	267
Sixtymile River, East Base, 1907.	151	151	254	269	Trouble, 1910	145	145	248	267
" " West Base, 1907.	152	152	254	269	Trout, 1910..	145	145		266
Skip of the Boundary.	171			267	Tub, 1911-12.	141	141	243	265
Skolai, 1909...........	158	158	259	271	Tundra, 1912.................	140	140	242	265
Skolai Pass, rock in, 1909	159	. . .		271	Turn, 1913	164	164	264	272
Skolai Peak, 1912........	159	159		271	Turner, 1911.........................	141	141	244	265
Skook, 1909.	148	148		268	Turner's astronomical station, 1910......	143	143	246	266
Slide, 1909..	148	148	250	268	" North Monument, 1910.......	144	144	246	266
Slide, 1909.	155	155		271	" Northwest Base, 1889-90........			246	
Slope, 1907.	150	150	252	268					
Slope, 1913..	164	164	264	272					
Smoke, 1913.	150	150		268					
Snag, 1909...	154	154	257	270	U of the Boundary (Mon. No. 174).....	176	108	270
Snider, 1909.	154	154	257	270	U_{1} of the Boundary (Mon. No. 22).....	166	104		265
Snow, 1913.	164	164	264	272	Uncle Sam, 1907	150	150	253	269
Solo, 1909...	157	157	259	271	Union, 1910.	146	146	250	267
Sourdough, East, 1912.	160	160	261	271					
Sourdough Peak, 1912.	160			271					
Spud, 1911	142	142	245	266					
Spur, 1907...	152	152	254	269	V of the Boundary..................	177			270
Squaw, 1909..	148	148	251	268	V_{1} of the Boundary (Mon. No. 20).... .	166	104		265
Starvation, 1908...........	153	153	256	270	Victoria, 1910. .	153			
Steel Creek Dome (U.S.G.S.), 1907	151	151	269	View Northeast, 1909	147	147	250	267
Steele, Mount, 1913	157	157			" " dark peak northeast of,				
Storm, 1910..	145	145	248	266	$1909 .$	146		267
Strata, 1909.	149	149	251	268					
Streak, 1912.	161	161	262	272	north of, 1909	147			
Stripe, 1910.	145	145	249	267	View Southwest, 1909.......	147			267
Sub, 1913...	162	162		272	Virginia, 1912.............	160	160	\ldots	271
Sub-End, 1913....	164	164	264	272					
Sulzer, Mount, 1913.	157	157		271					
Summit, 1908.....	153	153	255	269					
Sun, 1911...	143	143	245	266	W of the Boundary	177			271
Sunset 2, 1910.	143	143	246	266	W_{1} of the Boundary (Mon. No. 17)	166	104	…..	265
Sway, 1913....	162	162	272	Wad, 1911	142	142	245	266
					Walker, 1907.	151	151	254	269
					Walsh, 1913.... .	162	162	263	272
					Wan 2, 1910	143	143	246	266
T of the Boundary (Mon. No. 172).	176	108		270	Wart, 1910	145	145	.	267
T_{1} of the Boundary (Mon. No. 26)	166	104			Watt, 1911	142	142	244	265
Table, 1907.	150	150	253	268	Wave Mountain, 1911................	141			265

Index to positions, elevations and descriptions of monuments, etc.-Concluded.

\qquad	Position.	Ele-vation.	De-scription.	Sketch.	-	Position.	Ele-vation.	De-scription.	Sketch.
	Page.	Page.	Page.	Page.		Page.	Page.	Page.	Page.
Wee, 1911.	142	142	244	265	X of the Boundary	177			271
Wellesley, 1909...	154	154	257	270	X_{1} of the Boundary (Mon. No. 12).	165	104		265
" hill southwest of, 1909.	154	154		270	"X" (U.S.G.S.), 1909..	158	158		271
West, 1909.	148	148		268					
Whale Mountain, 1912.	140			265					
White, 1910..	145	145	248	267					
White Cap, 1913.	164			272	Y of the Boundary....	177			271
White River, East and West Bases, 1909	155	155	258	271	Y_{1} of the Boundary (Mon. No. 8)	165	104		265
Whitey, 1909..	157	157			"Y" (U.S.G.S.), 1912.............	158	158		271
Wienerwurst, 1908.	153	153	256	270	Yankee, 1911.	142	142	244	265
Wi-ki, 1909..............	155	155	257	271	Yellow, 1910.	146	146	250	267
Wi-ki Ridge, east and west mesas, 1909..	155			271	Young, 1912.......	161	161		272
" east and west peaks, 1909..	155			271	Young Creek, 1912.	160	160	261	271
" peak west of, 1909....... .	155				Yukon, 1907..	149	149	252	268
Williams, 1912............	160	160	261	271	Yukon River, East and West Bases, 1907	150	150	252	268
Witherspoon, 1907	151	151	254	269					
" North Base (U.S.G.S.).	151	151		269					
Wood, Mount.	157	157			Z of the Boundary	178			271
Woody, 1907..	150	150	253	269	Z_{1} of the Boundary (Mon. No. 5)..	165	104		265
Wreck, 1912.	140	140		265	"Z" (U.S.G.S.). east and west peaks, 1909	158	158		271

PANORAMA FROM STATION "DIVIDE"

PANORAMA FROM STATION "CRAG"

[^0]: ${ }^{1}$ For details see Appendices i and ii.

[^1]: ${ }_{2}$ See summary of observations, pages 237 and 238.
 ${ }^{2}$ Appendix ii, page 217 et seq.
 ${ }^{3}$ For full text, see pages 15 and 16.
 4 See appointments, pages 17,18 and 19.

[^2]: ${ }^{1}$ See sketches, page 265 , et seq.
 ${ }^{2}$ See page 57.

[^3]: ${ }^{1}$ The packers later discovered that carbolic acid in the crystal form was an effectual preventive of this rot. As soon as any signs were seen of a swelling at the back of the foot, they made a few cuts with a lancet, applied the acid crystals and bound it up as well as possible. A few applications usually effected a cure, if the swelling had been detected in its incipient stages.

[^4]: -

[^5]: ${ }^{1}$ Cairnes: Memoir 67: "The Yukon-Alaska International Boundary." Ottawa: Geological Survey: Department of Mines: 1914.
 ${ }^{2}$ Maddren: " Geologic Investigations along the Canada-Alaska Boundary." U. S. Geological Survey: Bulletin 520 K : 1912. Advance chapter from Bulletin 520: "Mineral Resources of Alaska, 1911."

[^6]: ${ }^{1}$ Cairnes: Memoir 67: "The Yukon-Alaska International Boundary." Ottawa: Geological Survey: Department of Mines: 1914.
 ${ }^{2}$ Maddren: "Geologic Investigations along the Canada-Alaska Boundary." U.S. Geological Survey, Bulletin 520 K. 1912. Advance chapter from Bulletin 520: "Mineral Resources of Alaska, 1911."

[^7]: 1Bancroft's " History of Alaska," Chapters iv and v. "Tracks and Land-falls of Bering and Chirikof." Davidson. Geographic Society of the Pacific. San Francisco, 1901.
 2^{44} Report of the Superintendent of the United States Coast Survey for the year 1875." Washington 1878, Appendix No. 10.
 ${ }^{3}$ Schwatka: " The Expedition of the New York Times." Century Magazine, April, 1891
 ${ }^{4}$ Scribner's Magazine. New York, April 1889. Alpine Journal: London, August, 1889.
 ${ }^{5}$ National Geographic Magazine, May 29, 1891.

[^8]: "" Thirteenth Annual Report of the United States Geological Survey," Part ii. Washington 1893.
 ${ }^{2}$ " Report of the Superintendent of the U. S. Coast and Geodetic Survey for the year ending June 1893." Washington: Government Printing Office, 1894.

[^9]: ${ }^{1}$ Professional Paper, United States Geological Survey, No. 45, page 124.
 ${ }^{2}$ Baldwin's determination of the elevation in 1913 , gave 18,008 feet.
 ${ }_{3}{ }^{2}$ Bournal of the American Geographical Society." vol. 29, 1897, pages 203 and 353.

[^10]: ${ }^{3}$ Abruzzi: " The Ascent of Mount St. Elias." New York: Frederick A. Stokes Company.

[^11]: ${ }^{1}$ See page 23, this report. $\quad{ }^{2}$ Ration list, Appendix v, page 278.

[^12]: ${ }^{1}$ Page 102.

[^13]: The 141 st Merrdian was determined in 1906 by

[^14]: Observers:-Valdez, J. E. McGrath .
 Sitka, Edwin Smith.
 Average time of transmission, $0 \cdot 064 \mathrm{~s}$.

[^15]: Observers:-Vancouver, Dr. Otto Klotz.
 Seattle, Edwin Smith and J. E. McGrath.
 Average transmission time, 0.063 s .

[^16]: ${ }^{1}$ The astronomic azimuth is here reckoned from north as zero, while in the list of geographic positions it is reckoned from south as zero, westward around the horizon.

[^17]: ${ }^{1}$ "Report of the Boundary Commission." United States Senate Document No. 247, 55th Congress, 2nd Session, Washington, 1898 Part II, Appendix IV.

[^18]: 1"Summary of Line Projection," page 122.

[^19]: ${ }^{1}$ For further particulars, see page 130.

[^20]: ${ }^{1}$ See narrative, pages 41, 48 and 55.

[^21]: ${ }^{1}$ See page 130.

[^22]: ${ }^{1}$ See narrative, page 110 et seq.

[^23]: i No check on this position.

[^24]: ${ }^{1}$ No check on this position.

[^25]: ${ }^{1}$ No check on this position.

[^26]: ${ }^{1}$ No check on this position.

[^27]: ${ }^{1}$ No check on this position.

[^28]: ${ }^{1}$ No check on this position.

[^29]: ${ }^{1}$ No check on this position.

[^30]: ${ }^{1}$ No check on this position.

[^31]: ${ }^{1}$ No check on this position. $\quad{ }^{2}$ Top of cairn.

[^32]: ${ }^{1}$ Target.

[^33]: ${ }^{1}$ No check on this position. $\quad{ }^{2}$ Top of cairn.

[^34]: ${ }^{1}$ No check on this position. ${ }^{2}$ Top of cairn. ${ }^{3}$ Lower target.

[^35]: ${ }^{1}$ No check on this position.

[^36]: ${ }^{1}$ No check on this position. $\quad{ }^{2}$ See bottom of page 164.

[^37]: ${ }^{1}$ No check on this position.

[^38]: ${ }^{1}$ No check on this position. ${ }^{2}$ These peaks are on the eastern edge of the Wrangel Mountains.

[^39]: ${ }^{1}$ No check on this position.

[^40]: ${ }^{1}$ No check on this position.

[^41]: ${ }_{2}^{1}$ No check on this position.
 ${ }^{2}$ No trigonometric determination was made of the position and elevation of the highest point of Mount Logan. A photographic determination of its elevation gives 19,850 feet. See special sheet in atlas.
 $23565-11 \frac{1}{2}$

[^42]: ${ }^{1}$ No check on this position.

[^43]: ${ }^{1}$ No check on this position

[^44]: ${ }^{1}$ No check on this position.

[^45]: ${ }^{1}$ No check on this position...

[^46]: ${ }^{1}$ No check on this position.

[^47]: ${ }^{1}$ No check on this position.

[^48]: ${ }^{1}$ No check on this position

[^49]: ${ }^{1}$ No check on this position.

[^50]: ${ }^{1}$ No check on this position.

[^51]: ${ }^{1 "}$ Report of the Superintendent of the U. S. Coast and Geodetic Survey for 1913." Appendix No. 3-Washington: Government Printing Office.

[^52]: ${ }_{1}$ "Theory and Practice of Surveying," J. B. Johnson, C.E., New York, John Wiley \& Sons, 1904, pp. 602c and 602d.

[^53]: " Publications of the Dominion Observatory," Vol. i, No. 2-Precise Levels. Ottawa: Government Printing Bureau, 1913.
 ${ }^{2}$ Ibid.

[^54]: ${ }^{1}$ "Report of the Boundary Commission." U. S. Senate Document No. 247, 55th congress, 2nd session, Washington, 1898. Part ii, appendix iv, pp. 113 and 114.

[^55]: ${ }^{1}$ Page 16, this report.

[^56]: ${ }^{1}$ Page 16 , this report.

[^57]: ${ }_{2}^{1}$ See page 182 , this report.
 ${ }^{2}$ Ottawa: Government Printing Bureau, 1895.
 ${ }^{3}$ " Report of the Superintendent of the U. S. Coast and Geodetic Survey for 1897," Appendix No. 10. Washington: Government Printing Office.
 ${ }^{4}$ Page 102, this report.
 23565-13

[^58]: ${ }^{1}$ Abruzzi: " The Ascent of Mount St. Elias," p. 159.
 ${ }_{2}$ "Thirteenth Annual Report of the United States Geological Survey," Part ii, p. 47.

[^59]: 1 "Appendix to the case of His Majesty's Government before the Alaska Boundary Tribunal," London: McCorquodale \& Co., Limited, 1903. Vol. i, page 7.
 ${ }^{2}$ Bancroft's " History of Alaska," chapters iv and v. "The History Company, San Francisco, 1890.
 ${ }^{3}$ " The Tracks and Landfalls of Bering and Chirikof," Prof. Geo. Davidson: Geographic Society of the Pacific, San Francisco, 1901.
 ${ }_{2}$ Ibid, chapter xi.

[^60]: ${ }^{1}$ Alaskan Boundary Tribunal. "Counter case of the United States and Appendix." Government Printing Office, Washington, 1903. Appendix, page 99.
 ${ }^{2}$ London: Longmans, Green \& Co., 1888. 2 vols. 8vo.
 ${ }_{3}$ "Appendix to the case of His Majesty's Government before the Alaska Boundary Tribunal," London: McCorquodale \& Co., Limited, 1903 . Vol. i, page 53.
 ${ }^{4}$ Ibid, page 62.
 ${ }^{5}$ Ibid, page 64.

[^61]: III. The line of demarcation between the possessions of the High Contracting Parties, upon the coast of the Continent and the islands of America to the north-west, shall be drawn in the manner following:

 Commencing from the southernmost point of the island called Prince of Wales Island
 the line of demarcation shall follow the summit of the mountains situated parallel to the coast as far as the point of intersection of the 141st degree of west longitude (of the same meridian); and, finally
 $\begin{array}{lll}{ }^{1} \text { Ibid, page } 67 . & { }^{2} \text { Ibid, page } 72 . & { }^{3} \text { Ibid, page } 74 .\end{array}{ }^{7}$ Ibid, page $116 . \quad{ }^{8}$ Ibid, page $85 . \quad{ }^{5}$ Ibid, page $124 . \quad 114 . \quad 6$ Ibid, page 81.

[^62]: 23565-14

[^63]: 1 " Bancroft's History of Alaska," Chapter xxvi.
 ${ }_{2}$ " Travel and Adventure in the Territory of Alaska," Whymper. London: John Murray, 1868. Page 169.
 ${ }_{3}$ " Report of an Exploration in the Yukon District, N. W. T. and adjacent northern portion of British Columbia," by George M. Dawson, 1887. Ottawa: Queen's Printer, 1898. Page 135 et seq.

[^64]: ${ }^{1}$ Smithsonian Reports: Washington 1861, pp. 39-40; 1864, pp. 416-420.
 ${ }_{2}$ "Alaska and its Resources," W. H. Dall, Boston, 1870.
 ${ }_{3}$ " Travel and Adventure in the Territory of Alaska." Page 210.
 ${ }^{4}$ Appendix i, page 208.
 ${ }^{5}$ Dawson's Report, page 139. Raymond: " Report of a Reconnaissance of the Yukon River, 1871." page 16.

[^65]: ${ }^{1}$ Dawson's Report, page 138.
 ${ }^{2}$ Dawson's Report, page 134.
 ${ }_{3}$ "Report on an Exploration in the Yukon and Mackenzie Basins, N.W.T." R. G. McConnell, B.A., Montreal: William Foster Brown \& Co., 1891.
 ${ }_{4}$ "An Expedition in the Copper, Tanana, and Koyukuk Rivers in the Territory of Alaska, 1885." Washington, 1887.
 ${ }^{5}$ For details see page 218, et seq.

[^66]: ${ }^{1}$ "Annual Report of the Department of the Interior for the year 1887." Ottawa: McLean, Roger \& Co., 1888. Ditto for the year 1889. Ottawa: Queen's Printer, 1890.
 ${ }^{2}$ For details see page 225 , et seq.
 $3^{\text {" }}$ National Geographic Magazine." Vol. iii, Washington, 1891.
 ${ }^{4}$ National Geographic Magazine, vol. iv, 1892, pp. 117-162.
 ${ }_{5}$ "A reconnaissance in the White and Tanana River basins, Alaska, in 1898." Alfred H. Brooks, United States Geological Survey, 20th Annual Report, 1898-9, part vii, pp. 431, et seq.
 ¿"Maps and descriptions of Routes of Exploration in Alaska in 1898." United States Geological Survey, Washington, D. C., 1899.

[^67]: ${ }^{1}$ Ogilvie: "Early Days on the Yukon." Ottawa: Thorburn \& Abbott, 1913, page 69.

[^68]: ${ }^{1}$ Dawson's Report: pages 1 and 2.
 ${ }_{2}$ "Annual Report of the Department of the Interior for the year 1889." Ottawa: Queen's Printer, 1890. Part viii, page 3 et seq.

[^69]: " "Annual Report of the Department of the Interior for the year 1889." Queen's Printer, Ottawa, 1890. Part viii, page 12 et seq.
 ${ }_{2}$ "Annual Report of the Department of the Interior for the year 1887." Ottawa: Maclean, Roger \& Co., 1888. Part ii, pages 25 and 26.

[^70]: ${ }^{1}$ "Annual Report of the Department of the Interior for the Year 1887." Ottawa: Maclean, Roger \& Co., 1888. Part ii, page 23.

[^71]: 1" Annual Report of the Department of the Interior for the year 1889." Ottawa: Queen's Printer, 1890. Part viii, page 15 .
 ${ }_{2}$ " Report of the Superintendent of the United States Coast and Geodetic Survey for the year ending June, 1890." Washington: Government Printing Office, 1891.
 ${ }^{2}$ " Report of the Superintendent of the United States Coast and Geodetic Survey for the year ending June, 1891." Washington: Government Printing Office, 1892.

 23565-15

[^72]: ${ }^{1}$ "Report of an Exploration in the Yukon and Mackenzie Basins, N. W. T.," by R. G. McConnell, B.A. Montreal: William Foster Brown \& Co., 1891.

[^73]: ${ }^{1}$ Old Rampart House at the mouth of Salmontrout River.

[^74]: ${ }^{1}$ "Report of the Superintendent of the U. S. Coast and Geodetic Survey for the year ending June, 1895." Washington: Government Printing Office. Appendix No. 2, page 321.

[^75]: ${ }^{1}$ Ibid: Appendix No. 3, page 334.

[^76]: Ibid: Appendix No. 3, page 333.
 On this day the temperature of the air was noted, $-51^{\circ} \cdot 5 \mathrm{~F}$. or $-46^{\circ} \cdot 4 \mathrm{C}$.

[^77]: ${ }^{1}$ Ibid: page 334.

[^78]: ${ }^{1}$ "Annual Report of the Department of the Interior for the year 1896." Ottawa: Queen's Printer 1897. Part ii, page 40 et seq.

[^79]: ${ }^{1}$ For full text see page 15 .
 ${ }_{2}$ See appointments, page 17 , et seq.

[^80]: ${ }^{1}$ For text see page 20.
 ${ }^{2}$ For text see page 22.

[^81]: ${ }^{1}$ Ration list, Appendix v, page 278.

[^82]: ${ }^{1}$ Ottawa: Government Printing Bureau, 1910.

[^83]: ${ }^{1}$ The amounts of some articles will, of course, be reduced if fresh meats, eggs, and vegetables can be bought in the country, and also if transportation permits the carrying of canned vegetables, fruit, and milk.
 ${ }^{2}$ Calculated from the figures for one man for one month. The following named articles may be selected by the District Engineer in quantities varying from the above list, but retaining the same relative amount of meat and vegetable food as given in the list:-Bacon, pork, corned beef, ham, peas, rice, oatmeal, cornmeal, buckwheat flour, condensed soup, assorted jam, and marmalade.
 may be issued
 ${ }_{4}$ When fresh meat is not available, salted or dried meat, as can best be obtained, may be issued instead.
 ${ }_{6}^{5}$ Calculated from the figures for one man for thirty days.
 ${ }^{6}$ Calculated from the figures for fourteen men for thirty days.
 ${ }^{7}$ Calculated from the figures for twelve men for thirty days. Eggs, fresh meat, and vegetables may be supplied as required if they can be obtained from the farming community.

 8 The article may be supplied instead of similar articles opposite which weights or measures have been shown.
 ${ }_{10}^{9}$ Calculated from purchases and amount used in 1910.
 ${ }^{11}$ Now known as evaporated milk.

